0. Introduction to lectures 1-4
Please read this introduction before the start of the summer school.

It would also be very helpful if you would read through and
familiarize yourself with the contents of section 1.1 (Lecture 1)
before the start of the lectures.

0.1 General outline

These written notes which accompany the lectures are quite detailed and
comprehensive. In the lectures, there will not be time to go over all the
topics which are described in the notes. Rather, we will go slowly through
the key ideas and the most important points. Later, after the summer
school, you may wish to study the notes in greater detail and look at those
parts we will not have time to go through.

The lectures will follow the notes closely and | recommend most strongly
that during the lectures you do not take any notes, but listen and follow the
presentation. The lecture notes provided here are so comprehensive that
you will not really miss anything by not taking notes.

There will be exercise classes following the lectures, and | hope that by
working through the problems you will deepen your understanding. Again,
there may not be time to work through all the exercises.

0.2 Scheme of the lectures

Lecture 2 Product Operators will be given first. It sets out a
straightforward theory which is well suited to analysing multiple-pulse NMR
experiments, and which will be used in the other lectures. Although this
theory has a sound base in quantum mechanics, it is quite easy to use as
much of it can be interpreted geometrically.

Lecture 3 Basic concepts for two-dimensional NMR will be given
next. In this lecture, the key ideas behind two-dimensional NMR will be
introduced, and several important experiments will be analysed using the
product operator approach introduced in lecture 1.

Lecture 1 Introduction to quantum mechanics introduces the theory
which is used to describe NMR experiments and from which the product
operator approach is developed. All of the basic ideas in quantum
mechanics are introduced, but these are developed in relation to NMR rather
than using the examples most commonly found in books about elementary
guantum mechanics.

Finaly, Lecture 4 Coherence selection: phase cycling and gradient
pulses describes a very practical part of multiple-pulse NMR, which is how
to select the signals we want and reject those we do not. Two methods —
phase cycling and gradient pulses — are described in theory and many
examples will be given of how to devise and analyse coherence selection
schemes.



0.3 General matters

Lectures 1 and 2 have been prepared specially for this summer school. The
first half of Lecture 3 is based in part of a third-year undergraduate course
NMR Spectroscopy which | gave in Cambridge in association with
Dr Melinda Duer; | thank her for invaluable advice and assistance . Lecture
4 was prepared for the EMBO sponsored course held in Turin, Italy, in
1995. The section on phase cycling was based in part on a lecture given at a
NATO ASI Workshop in Italy in 1990. The section on field gradient pulses
is based on an article published in Methods in Enzymology volume 239C
(1994) which | co-authored with Robin Clowes, Adrian Davis and Ernest
Laue. | thank the organisers of this and other meetings for the opportunity
to prepare and present this material.

Y ou are welcome to make copies of these lecture notes for your own use,
and to supply copies to colleagues, provided that due acknowledgement of
their origin is given. If you wish to make large numbers of copies, | would
appreciate being consulted first.

James Keeler Cambridge 1998

University of Cambridge,

Department of Chemistry

Lensfield Rd

Cambridge, CB2 1IEW

U.K.

EMAIL: James.Keeler@ch.cam.ac.uk



1 Introduction to quantum mechanics

Quantum mechanics is the basic tool needed to describe, understand and devise
NMR experiments. Fortunately for NMR spectroscopists, the quantum
mechanics of nuclear spins is quite straightforward and many useful
calculations can be done by hand, quite literally "on the back of an envelope".
This simplicity comes about from the fact that although there are a very large
number of molecules in an NMR sample they are interacting very weakly with
one another. Therefore, it is usually adequate to think about only one molecule
at a time. Even in one molecule, the number of spins which are interacting
significantly with one anotheri.€. are coupled) is relatively small, so the
number of possible quantum states is quite limited.

The discussion will begin with revision of some mathematical concepts
frequently encountered in quantum mechanics and NMR.

1.1 Mathematical concepts

1.1.1 Complex numbers

An ordinary number can be thought of as a point on a line which extends from
minus infinity through zero to plus infinity. gomplex number can be thought

of as a point in a plane; thecoordinate of the point is thesal part of the
complex number and thecoordinate is themaginary part.

imaginary
=3

!

If the real part isa and the imaginary part is, the complex number is

written as & + ib) where iis the square root of —1. The idea that 1 (orin
general the square root of any negative number) might have a "meaning” i one

a real

complex number can be

of the origins of complex numbers, but it will be seen that they have many m@tgh of as a point in the

; i i complex plane with a real part
uses than simply expressing the square root of a negative number. (2) and an imaginary part (b),

i appears often and it is important to get used to its properties:

i2=J-1x+/-1=-1

.3 _ . .2
1" =1 X117 =

it =i%xi%®=+1
1 ' L .
T = g%g { multiplying top and bottom by i}

i2 -1

The complex conjugate of a complex number is formed by changing the sign
of the imaginary part; it is denoted by a *

(a+ib)* =(a-ib)




o Im

r

0

a4 Re

An alternative representation of
a complex number is to specify
a distance, r, and an angle, 6.

The square magnitude of a complex numbas denotedC|? and is found
by multiplyingC by its complex conjugatéc]’ is always real

if C=(a+ib)

Ic? =CcxC*
=(a+ib)(a-ib)
:a2 +b2

These various properties are used when manipulating complex numbers:

addition: (a+ib)+(c+id) =(a+c)+i(b+d)
multiplication: (a+ib) x(c+id) = (ac-bd) +i(ad + bc)
division:

Ei::g - Ei:ii(?; * Eﬁi:g: {multiplying top and bottom by (c +id)*}
_(a+ib)(c+id)* _(a+ib)(c-id) _(ac+bd) +i(bc- ad)
(Cz+d2) (c2+d2) (C2+d2)

Using these relationships it is possible to show that

(CxDxEx..)*=(C*xD*xE*x..)

The position of a number in the complex plane can also be indicated by the
distancey, of the point from the origin and the ang between the real axis

and the vector joining the origin to the point (see opposite). By simple
geometry it follows that
Rd(a+ib)|=a Im[(a+ib)] =b 1.1]
=r cosd =rsing '

Where Re and Im mean "take the real part" and "take the imaginary part”,
respectively.

In this representation the square amplitude is

(a+ib)|" =a2 +b?

=r?(cos’ +sin? @) =r?
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where the identity c66 + sirf@ = 1 has been used.

1.1.2 Exponentials and complex exponentials

The exponential function; er exp(}, is defined as the power series

exp(x) =1+E x> + 33+ 2 x*+...

The number e is the base of natural logarithms, so that In(e) = 1.
Exponentials have the following properties

op(0) =1 ep(A) xexp(B) =exp(A+B)  [exp(A)] = exp(2A)
exp(A) x exp(— A) = exd A- A) = exjj0) = 1
1 exp( A)

exd=A) = A oxdB)

=exfd A) x exf- B)

The complex exponential is also defined in terms of a power series:
exp(if) =1+2(i6)> +1(i6)° +1(i9)" +...

By comparing this series expansion with those for sin@and cos@it can easily
be shown that

expli6) = cosf+ising [1.2]

Thisis avery important relation which will be used frequently. For negative
exponents thereis a similar result

exp(—i6) = cod-6) +isin(-6)

.. [1.3]
=cosfd-isnd

where the identities cod — 8) = cos@ and sin(- 8) = —sin8 have been used.

By comparison of Egns. [1.1] and [1.2] it can be seen that the complex
number (a + ib) can be written

(a+ib) =rexp(i6)

wherer = a® + b? and tand= (b/a).
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In the complex exponential form, the complex conjugate is found by
changing the sign of the termiin

if C=rexp(i6)
then C* =rexp(-i6)

It follows that

Ic|* =cc*
=rexpl(iO)r exp(-ib)
=r?exp(i@-i6) =r?exp(0)

:r2

Multiplication and division of complex numbers in thed format is
straightforward

let C=rexp(if) and D:sexp(i(p) then

%:T;(ie):?le)(p(_ie) ch:rsexp(i(6’+(p))
%:;::—EE:Z; :Lsexp(ié’) exp(-ig) :LSeXp(i(e‘@)

1.1.2.1 Relation to trigonometric functions

Starting from the relation
exp(if) = cosf+isind
it follows that, as cos@ = co¥¥ and sin(-6) = — sirg,
exp(—i6) = cosf-isiné
From these two relationships the following can easily be shown

expl(i6) + exp(—i6) = 2cos or cosf = %[exp(i@) +exp(—i6')]
expli6) - exp(-i6) = 2isin@ or sind=[expli6) - exp(-i6)]




1.1.3 Circular motion

In NMR basic form of motion is for magnetization to precess about a magnetic
field. Viewed looking down the magnetic field, the tip of the magnetization
vector describes a circular path. It turns out that complex exponentials are a
very convenient and natural way of describing such motion.

Consider a poinp moving in thexy-plane in a circular path, radiuscentred p
at the origin. The position of the particle can be expressed in terms of the %
distancea and an anglé Thex—component is /¢osf and the ycomponent is / 7 X
[Bin8. The analogy with complex numbers is very compelling (see section
1.1.1); if thex- andy-axes are treated as the real and imaginary parts, then the
position can be specified as the complex numbdexp( 6).

In this complex notation the angl@ is called thephase. Points With A it p moving on a circular
different anglesd are said to have different phases and the difference betw@gr the xy-plane.
the two angles is called thghase difference or phase shift between the two
points.
If the point is moving around the circular path with a constant speed then the
phase becomes a function of time. In fact for a constant spasdsimply
proportional to time, and the constant of proportion is the angular speed (or

frequency)w

0= wt

where @ is in radianst is in seconds andis in radians 8. Sometimes it is
convenient to work in Hz (that is, revolutions per second) rather than radS™;
the frequency in Hz, v, isrelated to w by w=2 .

The position of the point can now be expressed as r exp(i at), an expression
which occurs very frequently in the mathematical description of NMR.
Recalling that exp(i6) can be thought of as a phase, it is seen that there is a
strong connection between phase and frequency. For example, a phase shift of
6= at will come about due to precession at frequency wfor timet.

Rotation of the point p in the opposite sense is simply represented by y D
changing the sign of w r exp(+at). Suppose that there are two particfeand S\
p', one rotating at e@and the other atet assuming that they both start on ¥e %
axis, their motion can be described by expfr and exp(+at) respectively.
Thus, thex- andy-components are:
A/p’
| X-comp. Yy-comp. The x-components of two
. counter-rotating points add, but
p cosat sinat the y-components cancel. The
) resultant simply oscillates along

p cosat —-sinat the x-axis.

It is clear that the-components add, and tigecomponents cancel. All that is
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left is a component along theaxis which is oscillating back and forth at
frequencyw In the complex notation this result is easy to see as by Eqgns. [1.2]
and [1.3], expt) + exp(- iwt) = 2cogwt. In words, a point oscillating along

a line can be represented as two counter-rotating points.




1.2 Wavefunctions and operators

In quantum mechanics, two mathematical objects — wavefunctions and
operators — are of central importance. The wavefunction describes the system
of interest (such as a spin or an electron) completely; if the wavefunction is
known it is possible to calculate all the properties of the system. The simplest
example of this that is frequently encountered is when considering the
wavefunctions which describe electrons in atoms (atomic orbitals) or molecules
(molecular orbitals). One often used interpretation of such electronic
wavefunctions is to say that the square of the wavefunction gives the probability
of finding the electron at that point.

Wavefunctions are simply mathematical functions of position, &ime For
example, the 1s electron in a hydrogen atom is described by the function exp(—
ar), wherer is the distance from the nucleus and a constant.

In quantum mechanics, operators represent "observable quantities" such as
position, momentum and energy; each observable has an operator associated
with it.

Operators "operate on" functions to give new functions, hence their name

operatorx function = (new function)

An example of an operator (sl/dx); in words this operator says "differentiate
with respect to". Its effect on the function skis

i(si nx) = cosx
dx

the "new function" is cox. Operators can also be simple functions, so for
example the operatef just means "multiply by®".

It is clear from this discussion that operators and functtansot be re-
ordered in the same way that numbers or functions can be. For example

2x 3isthesameas 3x 2
x x sin(x) isthe same as sin(x) x x

d d
but %@x sin(x) is not the same as sin(x) x Q&Q

Generally operators are thought of as acting on the functions that appear to their
right.




1.2.1 Eigenfunctionsand eigenvalues

Generally, operators act on functions to give another function:

operatorx function = (new function)

However, for a given operator there are some functions which, when acted
upon, are regenerated, but multiplied by a constant

operatorx function = constant (function) [1.4]

Such functions are said to lesgenfunctions of the operator and the constants
are said to be the associategenval ues.

If the operator isQ (the hat is to distinguish it as an operator) then Eqn.
[1.4] can be written more formally as

Qf, =df, [1.5]

wheref_ is an eigenfunction of) with eigenvaluey; there may be more that

one eigenfunction each with different eigenvalues. Equation [1.5] is known as
the eigenvalue equation.

For example, is expk), wherea is a constant, an eigenfunction of the
operator(d/dx)? To find out the operator and function are substituted into the
left-hand side of the eigenvalue equation, Eqn. [1.5]

& Fexpla) = aepla

It is seen that the result of operating on the function is to generate the original
function times a constant. Therefore ex)(s an eigenfunction of the operator

(d/ dx) with eigenvalue.

Is sin@x), wherea is a constant, an eigenfunction of the operzétljdx)?

As before, the operator and function are substituted into the left-hand side of the
eigenvalue equation.

%@s n(ax) = acoq ax)

# constant x sin(ax)




As the original function is not regenerated, &) {s not an eigenfunction of the
operator(d/ dx) .

1.2.2 Normalization and orthogonality

A function, ¢, is said to be normalisetf

[l*)wdr=1

where, as usual, the * represents the complex conjugate. The notai®n d
taken in quantum mechanics to mean integration over the full range of all
relevant variableg.g. in three-dimensional space this would mean the range —
o to + oo for all ofx, yandz.

Two functionsy andgare said to berthogonal if

I(l//*) @dr =0

It can be shown that the eigenfunctions of an operator are orthogonal to one
another, provided that they have different eigenvalues.

if Qf, =qf, and Qf, =q'f,
then [(f,*)fy d7=0

1.2.3 Bra-ket notation

This short-hand notation for wavefunctions is often used in quantum mechanics.
A wavefunction is represented by a "kdt".); labels used to distinguish
different wavefunctions are written in the ket. For example

f, iswritten ‘q> or sometimes‘ fq>

It is a bit superfluous to writg inside the ket.

The complex conjugate of a wavefunction is written as a "Qral"; for
example

(fq,)* iswritten <q‘




The rule is that if a bra appears on kféand a ket on theght, integration
over dris implied. So

(9] a) impIiesJ’(fq, *) f,dr

sometimes the middle vertical lines are merg{qd\:q>.

Although it takes a little time to get used to, the bra-ket notation is very
compact. For example, the normalization and orthogonality conditions can be
written

{ala)=1 (a'|a)=0
A frequently encountered integral in quantum mechanics is
[w Qudr

where ¢4 and ¢ are wavefunctions, distinguished by the subscriptsdj. In
bra-ket notation this integral becomes

(19 ) [1.6]

as before, the presence of a bra on the left and a ket on the right implies
integration over d Note that in general, it is not allowed to re-order the
operator and the wavefunctions (section 1.2). The integral of Eqn. [1.6] is often

called amatrix element, specifically thdj element, of the operat®).
In the bra-ket notation the eigenvalue equation, Eqn. [1.5], becomes

Qla) =dla)

Again, this is very compact.

1.2.4 Basissets

The position of any point in three-dimensional space can be specified by giving
its x-, y- and zcomponents. These three components form a complete
description of the position of the point; two components would be insufficient
and adding a fourth component along another axis would be superfluous. The
three axes are orthogonal to one another; that is any one axis does not have a
component along the other two.
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In quantum mechanics there is a similar idea of expressing a wavefunction in
terms of a set of other functions. For exampglenay be expressed as a linear
combination of other functions

@) =aln+a,l2) +al3+.

where thei[Jare called théasis functions and theg; are coefficients (numbers).

Often there is a limited set of basis functions needed to describe any
particular wavefunction; such a set is referred to araplete basis set.
Usually the members of this set are orthogonal and can be chosen to be
normalized;j.e.

1.2.5 Expectation values

A postulate of quantum mechanics is that if a system is described by a
wavefunctiony then the value of an observable quantity represented by the

operatorQ is given by the expectation valt(ef)>, defined as

<Q>:[w*©wdr

[wrwdr

or in the bra-ket notation

A

o (wlQu)
<Q%_<ww0
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1.3 Spin operators

1.3.1 Spin angular momentum

A mass going round a circular path (an orbit) possemsgpgar momentum; it
turns out that this is a vector quantity which points in a direction perpendicular
to the plane of the rotation. Tixe y- andz-components of this vector can be
o specified, and these are the angular momenta in-the andz-directions. In
. . guantum mechanics, there are operators which represent these three components
A mass going round a circular

path possesses angular of the angular momentum.

t, ted b . . .
vector | which - pointe Nuclear spins also have angular momentum associated with them — called

E;;r;ﬁ)nndicular to the plane of  gpin angular momentum. The three components of this spin angular momentum
' (alongx, y andz) are represented by the operatbys I, and I, (from now on
the hats will be dropped unless there is any possibility of ambiguity).

These operators are extremely important in the quantum mechanical
description of NMR, indeed just about all of the theory in these lectures uses
these operators. It is therefore very important to understand their properties.

1.3.2 Eigenvaluesand eigenfunctions

From now on the discussion is restricted to nuclei with nuclear spin quantum
number, I, = 3. For such a spin, it turns out that there are just
(21 + 1) = 2 eigenfunctions of any one of the operatgrsl, and1,. As itis
traditional to define the direction of the applied magnetic fieldzashe
eigenfunctions of thd, operator are the ones of most interest. These two
eigenfunctions are usually denotedidnd 5] they have the properties

l,la) =3nla)

p)=-11p)

I z
where#: is Planck’'s constant divided byz2 These properties mean thafland

|f0are indeed eigenfunctions, with eigenvalugls and — %7 respectively.
These functions are normalized and orthogonal to one another

(ala)=1(p|p)=1(a|p)=0
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The interpretation of these two states rests on the idea of angular momentu

as a vector quantity. It turns out that angular momentum of ¢herel = )  +1 B
can be represented by a vector of Ien@{ﬁ(l +1) ; for spin 1 the length of -4

the vector is(+/3/2)h. This vector can orient itself with respect to a fixed axis, ) )
(04

say thez-axis, in only (2 + 1) ways such that th@ojection of the vectol onto
the z-axis is 14,(1 —=1)#,...—1%, i.e. integer steps betwedrand — | In the case Vector representation of the

1 . . . 1 1 spin angular momentum of a
of | = 3, there are only two possible projections;% and —37%. These spin half and its projections

. . . . onto the zaxis.
projections are labelled with a quantum numiner called the magnetic
quantum number. It has values, and -1 .

An alternative way of denoting the two eigenfunctions of the opelraioto
label them with then values

Izm,>:m|h‘m,>

e =4 D=4y

1
N}

So |%> and|—%> correspond tag[Jand COwhich can be thought of as "spin up”
and "spin down".
The functionsdUand plare not eigenfunctions of eithigror |y.

1.3.3 Raising and lowering operators

The raising operatol,, and the lowering operatdr, are defined as
o=+l 1o=1, =il [1.7]

These operators have the following properties

[1.8]

Their names originated from these properties. The raising operator acts on the
state |—%>, which has m = -3, in such away as to increase my by one unit to
give m = +3. However, if |, acts on the state |%> there is no possibility of
further increasing my as it is aready at its maximum value; thus I acting on |%>
gives zero.

The same rationalization can be applied to the lowering operator. It acts on
|4), which has m = + %, and produces a state on which my has been lowered by
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shay wlt)
E=h

A spectroscopic  transition
takes place between two
energy levels, E and E, which
are eigenvalues of the
Hamiltonian; these levels
correspond to eigenfunctions of
the Hamiltonian.

1

one i.em = —5. However, then value can be lowered no furtherlsacting

on |- 1) gives zero.

Using the definitions of Eqgn. [1.7], I and Iy can be expressed in terms of the
raising and lowering operators:

Lo=2(1,+12) 1, =40, -1.)

Using these, and the properties given in Egn. [1.8], it is easy to work out the
effect that 1, and 1, have on the states |aCland |BL] for example

Lla)=

By asimilar method it can be found that

Lla)y=30B) 1)B)=3na) 1 |a)=4in|g) 1,|B)=-%inla) [19]

These relationships all show that |aCand |f0are not eigenfunctions of I and Iy.

1.4 Hamiltonians

The Hamiltonian, H, is the specia name given to the operator for the energy of
the system. This operator is exceptionally important as its eigenvalues and
eigenfunctions are the "energy levels' of the system, and it is transitions
between these energy levels which are detected in spectroscopy. To understand
the spectrum, therefore, it is necessary to have a knowledge of the energy levels
and thisin turn requires a knowledge of the Hamiltonian operator.

In NMR, the Hamiltonian is seen as having a more subtle effect than simply
determining the energy levels. This comes about because the Hamiltonian also
affects how the spin system evolves in time. By altering the Hamiltonian the
time evolution of the spins can be manipulated and it is precisely thisthat lies at
the heart of multiple-pulse NMR.

The precise mathematical form of the Hamiltonian is found by first writing
down an expression for the energy of the system using classical mechanics and
then "trandating” this into quantum mechanica form according to a set of rules.
In this lecture the form of the relevant Hamiltonians will simply be stated rather
than derived.

In NMR the Hamiltonian changes depending on the experimental situation.
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There is one Hamiltonian for the spin or spins in the presence of the applied
magnetic field, but this Hamiltonian changes when a radio-frequency pulse is
applied.

1.4.1 Freeprecession
Free precession is when the spins experience just the applied magnetigfield,
traditionally taken to be along tzeaxis.

1.4.1.1 Onespin

The free precession Hamiltonidflee, IS

Hfree = VBo/;

where y is the gyromagnetic ratio, a constant characteristic of a particular
nuclear species such as proton or carbon-13. The qugBgityhas the units of
energy, which is expected as the Hamiltonian is the operator for energy.
However, it turns out that it is much more convenient to write the Hamiltonian
in units of angular frequency (radiang)swhich is achieved by dividing the
expression for Hyee by Zto give

Htree = )Bol;

To be consistent it is necessary then to divide all of the operators by 7. As a
result all of the factors of / disappear from many of the equations given above
e.g. they become:

l,la) =% a) 1,|8) =-%|8) [1.10]
L|B)=la)  1la)=1p) [1.11]
Llay=38) 1B =%a) 1 |a)=%iB) 1,|8)=-3%ila) [112]

From now on, the properties of the wavefunctions and operators will be used in
this form. The quantity yBo, which has dimensions of angular frequency (rad s
1), is often called the Larmor frequency, a.

Eigenfunctions and eigenvalues

The eigenfunctions and eigenvalues of Hsee are a set of functions, |il) which
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satisfy the eigenvalue equation:

Hfree|i>:£i|i>
wyl li) = gli)

It is already known thatr[Jand Jf0are eigenfunctions df, so it follows that
they are also eigenfunctions of any operator proportional to

Hfree|a> = CU0| z|a>
=z w)a)
and likewiseH .| 8) = w)1,|B) = -t w)|B).

So, pJand pOare eigenfunctions dfise With eigenvalues; «, and -3,
respectively. These two eigenfunctions correspond to two energy levels and a

transition between them occurs at freque&h;a0 - (—%a)o)) = w,.

1.4.1.2 Several spins

If there is more then one spin, each simply contributes a term; i
subscripts are used to indicate that the operator applies to a particular spin

Hiee = Wyl T, 15, +...

free

wherely; is the operator for the first spity, is that for the second and so on.
Due to the effects of chemical shift, the Larmor frequencies of the spins may be

different and so they have been writterzgs
Eigenfunctions and eigenvalues

As Hriee Separates into aum of terms, the eigenfunctions turn out to be a
product of the eigenfunctions of the separate terms; as the eigenfunctions of
w111, are already known, it is easy to find those for the whole Hamiltonian.

As an example, consider the Hamiltonian for two spins

Hfree = w(),lllz +w0,2|22

From section 1.4.1.1, it is known that, for spin 1
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B)=-%w,|B)

-1
a)O,lllz al> = zwo‘al> and a)O,lllz

likewise for spin 2

B)=-1w,|B)

Wyl 5, a2>:%wo,2‘a2> and Wy, 5,

Consider the functionB](a-[] which is a product of one of the eigenfunctions
for spin 1 with one for spin 2. To show that this is an eigenfunctibh&fthe
Hamiltonian is applied to the function

H

:31>‘ a,) = (%,1'12 + 6‘)o,zlzz) :@>‘ a2>
Bla,) + .| B)a,)
= =3 ,| B)|ay) + @yl B) )
= ‘%wo,l‘ﬂl>‘az>+%w0,2‘:31>‘a2>
= (~3eps + @) ) )

free

= wO,ll 1z

As the action oHsee 0N [Bilolis to regenerate the function, then it has been
shown that the function is indeed an eigenfunction, with eigenvalue

(‘%%,H%wo,z)- Some comment in needed on these manipulation needed

between lines 2 and 3 of the above calculation. The order of the fungtion |
and the operator,, were changed between lines 2 and 3. Generally, as was
noted above, it is not permitted to reorder operators and functions; however it is
permitted in this case as the operator refersito 2 but the function refers to

spin 1. The operator has no effect, therefore, on the function and so the two can
be re-ordered.

There are four possible products of the single-spin eigenfunctions and each
of these can be shown to be an eigenfunction. The table summarises the results;
in it, the shorthand notation has been used in wigichr}Uis denotedgatli.e.
it is implied by the order of the labels as to which spin they apply to

Eigenfunctions and eigenvalues for two spins
eigenfunction m3; m, M eigenvalue

laa) 1+ 1 +iw,+iw,
|a,8> +3 -1 0 +ia i,
|,80'> -1 +1 0 -iw,tia,
|,3,3> -1 -1 1 Ga i,
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laa)

The four energy levels of a two-
spin system. The allowed
transitions of spin 1 are shown
by dashed arrows, and those of
spin 2 by solid arrows.

Also shown in the table are tim values for the individual spins and the
total magnetic quantum numb®4, which is simply the sum of thg values of
the two spins.

In normal NMR, the allowed transitions are between those levels that differ
in M values by one unit. There are two transitions which come outyaf
|Balo |aaland ff0~ |BAC) and there are two which come out @j»,
|Bal~ |BB0and ff0«~ |aall The former two transitions involve a flip in the
spin state of spin 1, whereas the latter pair involve a flip of the state of spin 2.
The energy levels and transitions are depicted opposite.

1.4.1.3 Scalar coupling

The Hamiltonian for scalar coupling contains a ter;R;lj, for each coupled

pair of spins;J; is the coupling constant, in Hz, between spins i and j. The
terms representing coupling have to be added to those terms described in
section 1.4.1.2 which represent the basic Larmor precession. So, the complete
free precession Hamiltonian for two spins is:

Hiee = tWhla, + @, l,, + 270,151,

Eigenfunctions and eigenvalues for two spins

The product functions, such g&[ja»] turn out to also be eigenfunctions of the
coupling Hamiltonian. For example, consider the funcifaifd.] to show that
this is an eigenfunction of the coupling parttife, the relevant operator is
applied to the function

271]12'12I 2z

ﬂ1>‘az> = 2,1, ﬁ1>|22 a2>
=2m,1,|8)%|a,)
:27ﬂ12(—%)‘,81>%‘02>
=-370,|5)a,)

As the action of 2Zdi,li,l5, on Billasldis to regenerate the function, then it
follows that the function is indeed an eigenfunction, with eigenvéﬂiée]z]lz).

As before, the order of operators can be altered when the relevant operator and
function refer to different spins.

In a similar way, all four product functions can be show to be eigenfunctions
of the coupling Hamiltonian, and therefore of the complete free precession
Hamiltonian. The table shows the complete set of energy levels.
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Eigenfunctions and eigenvalues for two coupled

spins
number  eigenfunction M eigenvalue
1 laa) 1 +iw,+tiw,+370,
2 |O’ﬁ> 0 +%w0,1_%%,2_%7ﬂ12
3 |ﬁ0’> 0 _%%,1"'%(’-)0,2_%71]12
4 |ﬁﬂ> 1 _%wo,l_%%,z"'%mlz

There are two allowed transitions in which spin 1 flips, 1-3 and 2—4, and these
appear atayy + 712 and wy; - 7012, respectively. There are two further
transitions in which spin 2 flips, 1-2 and 3—-4, and these appeay, at 73;,

and w, - 7012, respectively. These four lines form the familiar two doublets
found in the spectrum of two coupled spins.

Transition 1-2 is one in which spin 2 flipg. changes spin state, but the
spin state of spin 1 remains the same. In this transition spin 2 can be said to be
active, whereas spin 1 is said to passive. These details are summarized in the
diagram below

1.3 2.4 1H227TJ3H4
2]
| 12‘ | 12
0,1 @o,2
spinl  flips a p
spin2 « B flips

The spectrum from two coupled spins, showing which spins are passive and active in each transition. The
frequency scale is in rad s™, so the splitting of the doublet is 2 /i, rad s™, which corresponds to Ji» Hz.

Eigenfunctions and eigenvalues for several spins

For N spins, it is easy to show that the eigenfunctions are the 2" possible
products of the single spin egenfunctions |ald and |f0 A particular
eigenfunction can be labelled with the my values for each spin, m;; and written

as|m,m,...m ,i> . The energy of thiseigenfunction is

N N

;myi“’oyi * Z%m,im,j(Zm”)

1=1 J>I

The restricted sum over the index j isto avoid counting the couplings more than
once.
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lab. frame
b4

rotating frame
z
<1 SWRF

X ——— Y
@ - ORF

At object rotating at frequency
w in the xy-plane when viewed
in the lab. frame (fixed axes)
appears to rotate at frequency
(w — arr) when observed in a
frame rotating about the zaxis
at akr.

2

|

|

J |
Q)] ORF

lllustration of the relationship
between the Larmor frequency,
wy, the transmitter frequency,
akr, and the offset, Q.

1.4.2 Pulses

In NMR the nuclear spin magnetization is manipulated by applying a magnetic
field which is (a) transverse to the static magnetic figldin thexy-plane, and
(b) oscillating at close to the Larmor frequency of the spins. Such a field is
created by passing the output of a radio-frequency transmitter through a small
coil which is located close to the sample.

If the field is applied along the-direction and is oscillating adukr, the
Hamiltonian for one spin is

H=w)l, + 2w, coswyt |,

The first term represents the interaction of the spin with the static magnetic
field, and the second represents the interaction with the oscillating field. The
strength of the latter is given loy.

It is difficult to work with this Hamiltonian as it depends on time. However,
this time dependence can be removed by changingdtatang set of axes, or a
rotating frame. These axes rotate about thaxis at frequencywxkr, and in the
same sense as the Larmor precession.

In such a set of axes the Larmor precession is no longes, abut at
(ar—arp); this quantity is called the offse2. The more important result of
using the rotating frame is that the time dependence of the transverse field is
removed. The details of how this comes about are beyond the scope of this
lecture, but can be found in a number of standard texts on NMR.

In the rotating frame, the Hamiltonian becomes time independent

H :(a)o_a)RF)lz-'-a)llx
:Q|z+a)1|x

Commonly, the strength of the radiofrequency field is arranged to be much
greater than typical offsetsy >>|Q|. It is then permissible to ignore the offset
term and so write the pulse Hamiltonian as (for pulses of either phase)

Hpulse,x = 6()1| X or Hpulse,y = 6()1| y

Such pulses are describednasd or non-selective, in the sense that they affect
spins over a range of offsets. Pulses with lower field strengihsyre termed
selective or soft.

1.4.2.1 Several spins

For multi-spin systems, a term of the foumx is added for each spin that is
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affected by the pulse. Note that in heteronuclear systems, pulses can be applied
independently to nuclei of different kinds

H =l tawl, +...

pulse,x

The product functions given above are not eigenfunctions of these Hamiltonians
for pulses.

From now it, it will be assumed that all calculations are made in the rotating
frame. So, instead of the free precession Hamiltonian being in terms of Larmor
frequencies it will be written in terms of offsets. For example, the complete
free precession Hamiltonian for two coupled spins is

H :Qlllz+Q2|22+27ﬂ12|lz|22

free

1.5 Time evolution

In general, the wavefunction describing a system varies with time, and this
variation can be computed using the time-dependent Schrodinger equation

dy(t) _
“a —iHw(t) [1.13]

where ¢(t) indicates that the wavefunction is a function of time. From this
equation it is seen that the way in which the wavefunction varies with time
depends on the Hamiltonian. In NMR, the Hamiltonian can be manipulated —
for example by applying radio-frequency fields — and it is thus possible to
manipulate the evolution of the spin system.

As has been seen in section 1.2.5, the size of observable quantities, such as
magnetization, can be found by calculating the expectation value of the
appropriate operator. For example, #amagnetization is proportional to the
expectation value of the operatgr

wherek is a constant of proportion. As the wavefunction changes with time, so
do the expectation values and hence the observable magnetization.

1.6 Superposition states

This section will consider first a single spin and then a collection of a large
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L|a0= (1/2) |aO

k|B0= —(112) | A0
0= [Blal=0
at= (BA0= 1

number of non-interacting spins, called arsemble. For example, the single
spin might be an isolated proton in a single molecule, while the ensemble would
be a normal NMR sample made up of a large number of such molecules. In an
NMR experiment, the observable magnetization comes from the whole sample;
often it is called thdoulk magnetization to emphasize this point. Each spin in
the sample makes a small contribution to the bulk magnetization. The
processes of going from a system of one spin to one of many is eadéable
averaging.

The wavefunction for one spin can be written

@) =c, (V) @) +c,(t)| B)

where cq(t) and cg(t) are coefficients which depend on time and which in
general are complex numbers. Such a wavefunction is cakapegposition
state, the name deriving from the fact that it is a sum of contributions from
different wavefunctions.

In elementary quantum mechanics it is all too easy to fall into the erroneous

view that "the spin must be either up or down, that is in statestateS". This
simply is not true; quantum mechanics makes no such claim.

1.6.1 Observables

Thex-, y- andz-magnetizations are proportional to the expectation values of the
operatordy, Iy andl,. For brevity,cqy(t) will be writtenc,, the time dependence
being implied.

Consider first the expectation valuelp{section 1.2.5)

(¢, (al+ (a1, (cla) +c,| B)

(catarl+c(B)(c, o) + 4/ 8)

) +cciall,|B)+ce,(All,
C,Clala) +cye <,3‘ >+Cacﬂ<a‘ﬁ>+cﬂcﬂ<'3‘ﬁ>

scic,{ala) + 3, (Bla) +(=3)cic,{al B) + cpes(- 3)(8| B)

C,C, x1+cyc, x0+c,cy x0+Che, X1

(1) =

_c;c (all,|la) +cye <

)

icic, x1+3c,c, x0+(-3)cic, x0+cye (- 3) x1

C,C, +CxCy
( Cﬂcﬂ)

(C c, t CﬂCﬂ)

_1\%
2
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Extensive use has been made of the facts that the two wavefungfiiansl |[5(]
are normalized and orthogonal to one another (section 1.3.2), and that the effect
of I, on these wavefunctions is know (Eqn. [1.10]).

To simplify matters, it will be assumed that the wavefunctigf) is
normalized so thafy [¢C= 1; this implies that,c, +c,c; =1.

Using this approach, it is also possible to determine the expectation values of
Ix andly. In summary:

[1.14]

It is interesting to note that if the spin were to be purely in statsych that,

= 1,c3 = 0, there would be no-»nd noy-magnetization. The fact that such
magnetization is observed in an NMR experiment implies that the spins must be
in superposition states.

The coefficientssy andcg are in general complex, and it is sometimes useful
to rewrite them in thér/¢ format (see section 1.1.2)

c, =TI, exp(igq,) Cs =T, exp(iqaﬁ)
c, =T, exp(—iqaa) Cs =1, exp(—igop)

Using these, the expectation valuesl{gr, become:

(L)=2(2 =) (1) =rr,cod - g)
<Iy> = rarﬂsin(gq, —goﬂ)

The normalization conditiorg,c, +c,c, =1, becomesj\ra2 + rj) =1 in this
format. Recall that thes are always positive and real.

1.6.1.1 Comment on these observables

The expectation value df, can take any value between (whenrq =1,

rg = 0) and-3 (whenrq = 0,rg = 1). This is in contrast to the quantum number
my which is restricted to values 3 ("spin up or spin down"). Likewise, the
expectation values of land I, can take any values between; and +;,
depending on the exact values of the coefficients.
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1.6.1.2 Ensemble averages; bulk magnetization

In order to compute, say, themagnetization from the whole sample, it is
necessary to add up the individual contributions from each spin:

Where<l X> is the ensemble average, that is the sum over the whole sample.
The contribution from théh spin,[] can be calculate using Eqn. [1.14].

-1 +4 +1
—2(cﬁc +C,C ) 2(cﬁc +C4C ) 2(cﬁc +cﬁc)+..

-1

=1, cos((/g, - (/;3)

On the third line the over-bar is short hand for the average written out explicitly
in the previous line. The fourth line is the same as the third, but expressed in
the(r,¢@ format (Eqn. [1.15]).

The contribution from each spin depends on the valueggaind ¢ g which
in general it would be quite impossible to know for each of the enormous
number of spins in the sample. However, when the spins are in equilibrium it is
reasonable to assume that the phaggf the individual spins are distributed
randomly. As [[=rqrgcos@ - ¢) for each spin, the random phases result in
the cosine term being randomly distributed in the range —1 to +1, and as a result
the sum of all these terms is zero. That is, at equilibrium

This is in accord with the observation that at equilibrium there is no transverse
magnetization.

The situation for the-magnetization is somewhat different:
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(1) =00+ (1), + (1)
(r;,l - rﬂ2,1)+%(raz,2 - rﬂz,z)"'%(raz,s - rﬂz,s)

2 2 2 _af,2 2 2
(ra,l +r,, tr 5t ) > (rﬂ,l trg, trp5t.. )

(=17

Note that the phasegdo not enter into this expression, and recall that'the
are positive.

This is interpreted in the following way. In the superposition state
Cq a0+ c3 |80 c,c, =r2 can be interpreted as tipeobability of finding the

Nk N

(NI

spin in statedl] and cﬁc; = rj as likewise the probability of finding the spin in

state 0 The idea is that if the state of any one spin is determined by
experiment the outcome is always eitlegrdr |30 However, if a large number
of spins are taken, initially all in identical superposition states, and the spin

states of these determined, a fractige, would be found to be in statel]
and a fractiorc,c, in state fJ

From this it follows that

whereP, andPg are the total probabilities of finding the spins in statéof |GL]
respectively. These total probabilities can be identified with the populations of
two levels §Jor |BL] Thez-magnetization is thus proportional to the population
difference between the two levels, as expected. At equilibrium, this population
difference is predicted by the Boltzmann distribution.

1.6.2 Timedependence

The time dependence of the system is found by solving the time dependent
Schrddinger equation, Eqn. [1.13]. From its form, it is clear that the exact
nature of the time dependence will depend on the Hamiltareant will be
different for periods of free precession and radiofrequency pulses.

1.6.2.1 Freeprecession

The Hamiltonian (in a fixed set of axes, not a rotating framejlisand at time
= 0 the wavefunction will be assumed to be

1-25



L|a0= (1/2) |aO

k|B0= —(112) | A0
0= [Blal=0
at= (BA0= 1

|(0)) = ¢, (0)a) +c,(0)| B)
=1, (0) eplig, (0] a) +1,(0) expligg (0)] 8)

The time dependent Schrddinger equation can therefore be written as

dy(t) _
—dt =-iHy

dlc, ®la)+c, 1))
dt

=-iwyl,|c, () a)+ Cﬂ(t)|'8>]
- -iwie, () a) - 2c, ()] )

where use has been made of the propertied,ofivhen acting on the
wavefunctionsdiJand P(section 1.4 Egn. [1.10]). Both side of this equation
are left-multiplied by &, and the use is made of the orthogonalityrdénd O

d(alc, (V]a) +{alc, )| A)]
dt

= w0[<a|%ca t)a) - <0|%Cﬂ(t)|:3>]
de, (t) _ 1
& - siay c, (1)

The corresponding equation fgyis found by left multiplying byA|.

dc,(t)
B .
These are both standard differential equations whose solutions are well know:

c,(t) =c,(0) exp(—%iwo t) cs(t) = c4(0) exp(%icu0 t)

All that happens is that the coefficients oscillate in phase, at the Larmor
frequency.

To find the time dependence of the expectation valuedyof these
expressions fot, g(t) are simply substituted into Eqn. [1.14]
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(1)) = 4(c; (e, (1) - c5(t)c, (1)
c, (0)c,(0) exp(%i w, t) exp(— 3w, t)
~ 3¢,(0)c,(0) exp(—%iwo t)exp(%iwo t)
¢, (0)c, (0) -z c5(0)c,(0)

a a

As expected, the-component does not vary with time, but remains fixed at its
initial value. However, thex- and y-components vary according to the
following which can be found in the same way

(1,)(0) =41, (0)r,(0) co eyt - ,(0) + ,(0))
(1,)(1) = 31, (0)r,(0) sin{eat - ,(0) + ,(0))

Again, as expected, these components oscillate at the Larmor frequency.

1.6.2.2 Pulses

More interesting is the effect of radiofrequency pulses, for which the
Hamiltonian (in the rotating frame) @lx. Solving the Schrédinger equation is
a little more difficult than for the case above, and yields the result

(@]
Q
—
~+
~
]

c,(0) cos3 wit —ic,(0) sinz wt

(@]
=)
—
—
~
]

c;(0)cosz wit —ic,(0)sinz wt

In contrast to free precession, the pulse actually causes that coefficients to
change, rather than simply to oscillate in phase. The effect is thus much more
significant.

A lengthy, but straightforward, calculation gives the following resulflfar

(1,)(0) = (c, (0)c;(0) - c; (0)c,(0)) coscat

[1.16]
~3(c,(0)c; (0) - ¢ (0)c,(0) sinat

The first term in brackets on the right is simflyJat time zero (compare Eqn.
[1.14]). The second term i$,0at time zero (compare Eqn. [1.14]). SBI{t)
can be written

<I y>(t) = <I y>(O)cosa)1t—<l ,)(0)sinat
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N

Each spin makes a contribution
to the magnetization in each
direction (top diagram). A
pulse, here 90° about the x-

axis, rotates all of these
contributions in the same sense
through the same angle

(bottom diagram).

This result is hardly surprising. It simply says that if a pulse is applied about
the x-axis, a component which was initially alongl,[{0) is rotated towards.
The rotation fronztoy is complete whemt = 772, i.e. a 90° pulse.

The result of Eqn. [1.16] applies to just one spin. To make it apply to the
whole sample, the ensemble average must be taken

(1,)©) = (1, )(0) cosewyt - (1, )(0) sinet [1.17]

Suppose that time zero corresponds to equilibrium. As discussed above, at
equilibrium then ensemble average of theomponents is zero, but tie
components are not, so

<Iy>(t):—<lz>eqsinwlt

wherell,[4, is the equilibrium ensemble average of #ttemponents. In words,
Egn. [1.17] says that the pulse rotates the equilibrium magnetizatiorz tom
y, just as expected.

1.6.3 Coherences

Transverse magnetization is associated in quantum mechanics with what is
known as acoherence. It was seen above that at equilibrium there is no
transverse magnetization, not because each spin does not make a contribution,
but because these contributions are random and so add up to zero. However, at
equilibrium the z-components do not cancel one another, leading to a net
magnetization along tredirection.

During the pulse, the-component from each spin is rotated towayds
according to Eqn. [1.17]. The key point is that all the contributions from all the
spins, although they start in random positions in ya@lane, are rotated
through thesame angle. As a result, what started out as a net alignment in the
z-direction rotates in they-plane, becoming a net alignment alongafter a
90° pulse.

Another interpretation is to look at the way in which the individual
coefficients vary during the pulse

O
Q
—
—t
~
I

c,(0) cos3 wt —ic,(0)sinz wt

O
=
—
—t
~
I

c;(0) cos; wit —ic,(0)sinz wt

In words, what happens is that the size of the coefficients at tneerelated to
those at time zero in a way which is tbamme for all spins in the sample.
Although the phases are random at time zero, for each spin the phase associated
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with ¢, at time zero is transferred ¢g, and vice versa It is this correlation of
phases between the two coefficients which leads to an overall observable signal
from the sample.

1.7 Density matrix

The approach used in the previous section is rather inconvenient for calculating
the outcome of NMR experiments. In particular, the need for ensemble
averaging after the calculation has been completed is especially difficult. It
turns out that there is an alternative way of casting the Schrddinger equation
which leads to a much more convenient framework for calculation — this is
density matrix theory. This theory, can be further modified to give an operator
version which is generally the most convenient for calculations in multiple
pulse NMR.

First, the idea ofmatrix representations of operators needs to be introduced.

1.7.1 Matrix representations

An operator,Q, can be represented as a matrix in a particodars set of
functions. A basis set is a complete set of wavefunctions which are adequate
for describing the system, for example in the case of a single spin the two

functions flJand pform a suitable basis. In larger spin systems, more basis
functions are needed, for example the four product functions described in
section 1.4.1.2 form such a basis for a two spin system.

The matrix form ofQ is defined in this two-dimensional representation is
defined as

alQa) (alQdB)E
97 %MQW (808"

Each of the matrix element§);, is calculated from an integral of the form
Q| L) where iJand jjUare two of the basis functions. The matrix elenf@nt
appears in thigh row and thgth column.

1.7.1.1 Onespin

Particularly important are the matrix representations of the angular momentum
operators. For examplg;

L|a0= (1/2) |aO

k|B0= —(112) | A0
0= [Blal=0
at= (BA0= 1
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| zéallzlw all,|B)d
2 Hpll,la) <,8IZ[>’>%
_Halila) (al-3[B)=
Blila) (8-1BF

00

= 1D

0 -30

As usual, extensive use have been made of the propertiesad the ortho-
normality of the basis functions (see sections 1.3.2).

The representations gf andly are easily found, by expressing them in terms
of the raising and lowering operators (section 1.3.3), to be

| _[D %E I
X_% OD y

1
g
]

1.7.1.2 Direct products

The easiest way to find the matrix representations of angular momentum
operators in larger basis sets is to useltheet product.

When two mn matrices are multiplied together the result is anotiver
matrix. The rule is that thigth element of the product is found by multiplying,
element by element, thith row by thejth column and adding up all the
products. For example:

@ bOdp gO @Ap+br ag+bsg

H: dHH SH:ECp+dr cq+dsH

The direct product, symbolized, of two nxn matrices results in a larger matrix
of size 2r«2h. The rule for this multiplication is difficult to express formally
but easy enough to describe:

0 Op qd (b q
[a bDDDp qD_Eﬁx SH bXH S
& d s O Op 9O g [ ql

T8 o 95 st

The right-hand matrix is duplicated four times over, because there are four
elements in the left-hand matrix. Each duplication is multiplied by the
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corresponding element from the left-hand matrix. The final result is

bp bgd [ap aq bp bgQO

0 o U]
br bsD_ Ar as br bsD
dp dgU” Oy 0
p qD DD cq dp qu
dr dsJ [kr cs dr dsO]

Eap aq
™ bO [p q0 @ as
B: dHDH SH_Ebp cq
Ler

Cs

(the lines in the central matrix are just to emphasise the relation toxHe 2
matrices, they have no other significance).

The same rule applies to matrices with just a single row (row vectors)

(a,b) 0 (p.q) = (ap.aq,bp,ba)

1.7.1.3 Two spins
The basis set for a single spin can be written[{[5.] the basis set for two

spins can be found from the direct product of two such basis sets, one for each
spin:

(a)la)a(a)la)=(la ) )z ) B)e). £)2))

In this basis the matrix representatior gfcan be found by writing the operator
as the direct product

Iy 0 Es [1.18]

whereE is the unit matrix

. 0g

= 1

The subscript 2 on thE in Egn. [1.18] is in a sense superfluous as the unit
matrix is the same for all spins. However, it is there to signify that in the direct
product there must be an operator for each spin. Furthermore, these operators
must occur in the correct order, with that for spin 1 leftmost and so on. So, to
find the matrix representation b the required direct product is

E1 O 1
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In matrix formE; O oy is

E, 01 g ODDED %E
1 2)(_& 1H % OD
0 3 0 0O
O
_% 0 0 Og
- 1]
Eb 0 0 37
M 0 3 00
andli O Eyis
M 10 O 0g
IlXDEZ:% OED 15
0 0 3 0O
g U
_M0 0 0 30
[ [
o7 00 OD
M <+ 0 0O
As a final exampléy, O 15y is
D 10 D -0
M 0 0 -40
0 i O
_Mm 0 7 00
- _i O
Eb + 0 0p
& 0 0 00O

All of these matrices are hermetian, which means that matrix elements related
by reflection across the diagonal have the propertyGhatQ;*.

1.7.2 Density matrix

For a one spin system the density mawixs defined according to its elements

t

Jep(t)E
)c;(t)g

oft) = %a(t)czgt t

) ¢,
(1) cylt
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where the over-bars indicate ensemble averaging. This matrix contains all the
information needed to calculate any observable quantity. Forroa#lydefined
in the following way:

1.7.2.1 Observables

It can be shown that the expectation value of an ope@t®,given by

(Q=Troq]

where TrA] means take the tracéhat is the sum of the diagonal elements, of
the matrixA.

For example, the expectation valud a6

1

N
—_

(]

Q

—

~—+

~—"

o

] .
—~ .

~—+ .
N—

|

(g

=

—_

—+

N—

O

®

—_

~—+

~—
~——

—1f,2 _.2
_E(ra _rﬂ)

This is directly comparable to the result obtained in section 1.6.1.2.

The very desirable feature of this definition of the density matrix and the
trace property for calculation observables is that the ensemble averaging is done
before the observable is computed.

The expectation value of is

7
Z ‘
~—
1
_|
=
mi a]
—~
— | “—+
O |0
Q Q
—~| —~
— | T+
O |0
w | =
—~| —~
— | T+
O 1.0
= >y
—~| —~
—+ —+
~—| ~—
O Nl
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Again, this is directly comparable to the result obtained in section 1.6.1.2

The off diagonal elements of the density matrix can contribute to transverse
magnetization, whereas the diagonal elements only contribute to longitudinal

magnetization. In general, a non-zero off-diagonal elemétic; (t) indicates

a coherence involving levelsi andj, whereas a diagonal element(t)c (t),
indicates the population of level

From now on the ensemble averaging and time dependence will be taken as
implicit and so the elements of the density matrix will be written sinmptil

unless there is any ambiguity.

1.7.2.2 Equilibrium

As described in section 1.6.1.2, at equilibrium the phases of the super-position
states are random and as a result the ensemble avera¢s,(t) and

c,(t)c, (t) are zero. This is easily seen by writing then irrtipéormat

*

C,Cs =T, exp(iqaa)rﬁ exp(— iqaﬁ)
=0 at equilibrium

However, the diagonal elements do not average to zero but rather correspond to
the populations?;, of the levels, as was described in section 1.6.1.2

*

c,C, =T exp(iqza)raexp(—i%)

1
N

Il
=
U 2 ,\,|

The equilibrium density matrix for one spin is thus

i
9@ 7H0 P,

As the energy levels in NMR are so closely spaced, it turns out that to an
excellent approximation the populations can be written in terms of the average
population of the two levelsP,, and the difference between the two
populationsA, whereA =Py - Pg
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Comparing this with the matrix representation$, @ndE, g, can be written

g, =P,E+Al,

It turns out that the part from the matrk does not contribute to any
observables, so for simplicity it is ignored. The fad&datepends on details of

the spin system and just scales the final result, so often it is simply set to 1.
With these simplification®iy is simplyl,.

1.7.2.3 Evolution

The density operator evolves in time according to the following equation, which
can be derived from the time dependent Schrédinger equation (section 1.5):

dz—ft) _ Si[Holt) - o{t)H] [1.19]

Note that asd and o are operators their order is significant. Just as in section
1.5 the evolution depends on the prevailing Hamiltonian.

If H is time independent (something that can usually be arranged by using a
rotating frame, see section 1.4.2), the solution to Eqn. [1.19] is straightforward

o(t) = exp(~iHt)o{0) exp(iHt)

where again the ordering of the operators must be preserved. All the terms is
this equation can be thought of as either matrices or operators, and it is the
second of these options which is discussed in the next section.

1.7.3 Operator form of the density matrix

So far, Hamiltonians have been written in terms of operators, specifically the
angular momentum operatdss,,, and it has also been seen that these operators
represent observable quantities, such as magnetizations. In addition, it was
shown in section 1.1.2.2 that the equilibrium density matrix has the same form
asl,. These observations naturally lead to the idea that it might be convenient
also to write the density matrix in terms of the angular momentum operators.
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Specifically, the idea is to expand the density matrix as a combination of the
operators:

aft) = a(t)l, + b(b)l, + c(t)l,

wherea, b andc are coefficients which depend on time.

1.7.3.1 Observables

From this form of the density matrix, the expectation value of, for examyple,
can be computed in the usual way (section 1.7.2.1).

(1,)=Tia,]
:Tﬂmx+my+d2y4

= Tr[al | X] +Tr[bl yIX] +Tr[C|z|x]

where to get to the last line the property that the trace of a sum of matrices is
equal to the sum of the traces of the matrices has been used.

It turns out that Tifly] is zero unless p = q when the trace is =for
example

N~

WDQJZWED 0
g of o
(%

e
=T aHE
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This is a very convenient result. By expressing the density operator in the form
o(t) = a()l; + b(t)ly + c(t)l, the %, y- andz-magnetizations can be deduced just
by inspection as being proportionald(t), b(t), andc(t) respectively (the factor

of one half is not important). This approach is further developed in the lecture 2
where theproduct operator method is introduced.

1.7.3.2 Evolution

The evolution of the density matrix follows the equation

o(t) = exp(~iHt)o{0) exp(iHt)

Often the Hamiltonian will be a sum of terms, for example, in the case of free
precession for two spind = Qil1, + lo,. The exponential of theum of two
operators can be expressed apreduct of two exponentials provided the
operatorgommute

exp(A+ B) = exp( A) exp(B) provided A and B commute

Commuting operators are ones whose effect is unaltered by changing their
order:i.e. ABy = BAY; not all operators commute with one another.

Luckily, operators for different spins do commute so, for the free precession
Hamiltonian

exp(-iHt) = exp(=i[Q, 1, + Q,1.]t)
= exp(— i1Q,l lZt) exp(— 1Q,1 22t)

The evolution of the density matrix can then be written
o(t) = exp(— iQ,l lZt)exp(— iQZIzzt)a(o)exp(inlht)exp(inlZzt)

The operators for the evolution due to offsets and couplings also commute with
one another.

For commuting operators the order is immaterial. This applies also to their
exponentialse.g. exp(A) B =B exp(A). This property is used in the following

exp(— inllzt)I2X exp(inllzt) = exp(—inllzt)exp(inllzt)l2x
= exp(=i1Q,l,t +iQ,1,t)1,,
= exp(o)le = |2x
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In words this says that the offset of spin 1 causes no evolution of transverse
magnetization of spin 2.

These various properties will be used extensively in lecture 2.
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2 Product Operators

The product operator formalism is a complete and rigorous guantum
mechanical description of NMR experiments; the formalism is a version of
density matrix theory and is well suited to calculating the outcome of
modern multiple-pul se experiments.

One particularly appealing feature is the fact that the operators have a
clear physical meaning and that the effects of pulses and delays can be
thought of as geometrical rotations. To emphasise this connection the
discussion will start with abrief summary of the vector model.

2.1 Vector model of NMR

The vector model is a complete description of the behaviour of an ensemble
(a macroscopic sample) of non-interacting spin-half nuclei. Each spin has
two energy levels and at equilibrium the lower of these is more populated.
The result is a net magnetization of the sample along the direction of the
applied magnetic field (taken to be the z-direction). The vector model
focuses entirely on the behaviour of this magnetization, which can be
represented as a vector.

Radiofrequency pulses are represented as rotations about the x- or y-axes;
if the radiofrequency field strength is i (rad s™) then a pulse applied for a
time t causes a rotation through an angle a, where a = wt. For example a

90° pulse about the-axis haswt = 772 and rotates magnetization from the l

z-axis onto the y-axis.

Free precession is represented as a rotation abomathie at frequency
Q (rad s%), where Qs the offset (that is the difference between the Larmor
frequency and the transmitter frequency). Free precession for atimet causes
arotation through an angle a, where a = Q.

Only x- and y-magnetization are directly observable in an NMR
experiment; it is the precession of the magnetization in the xy-plane which
givesrise to the free induction signal.

2.1.1 Example — the conventional pulse-acquire experiment

Assume that the system starts at equilibrium; a pulse of flip angle a is
applied and then the free induction signal is recorded. Let the equilibrium
magnetization (aligned along the z-axis) have size My. After the pulse the z-
and y-magnetization (M, and My, respectively) are

M; = cos a Mg My =-sin aMg

Free precession, which is a rotation about the z-axis, has no effect on the z-
component. The y-component rotates in the xy-plane giving the following
transverse components after timet

2-1
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My(t) =-sinacos@Qt My  My(t) =sinasin2t Mg

It is these transverse (that is, x and y) components of the magnetization that
are detected in NMR experiments. It is seen that these are oscillating at
frequency Q, and that their overall size depends on the sine of the flip angle
i.e. they are a maximum for a 90° pulse.

2.1.2 Example — the spin echo

a b e f _
90° (x) ——delay r——180°(x) ——delay r——acquire

a b c d e f

y-component

P
PP BB B

L x-component |

After the delay, point b, the vector can be resolved into y- and x-components
as shown in c. The 180° pulse about theaxis has no effect on the
component of the magnetization; in contrast yfeomponent is rotated by
180° in the yzplane, ending up along the opposite axis. The individual
components after the 180° pulse are showash Bind corresponding vector is
shown ine. The effect of the 180° pulse about thaxis is to reflect the
vector in thexz-plane. During the second tintethe vector precesses in the
same direction as it did during the first timand through the same angle,
ending up along thg-axis.

At the end of the sequence the vector always ends up alongattis,
regardless of the time and the offset; the sequence is said to "refocus the
offset (or shift)".

2.2 Operators for one spin

2.2.1 Operators

Operators are mathematical functions which arise in quantum mechanics
(see lecture 1); as their name suggest, they operate on functions. In quantum
mechanics operators represent observable quantities, such as energy, angular
momentum and magnetization.

For a single spin-half, the- y- andz-components of the magnetization
are represented by the spin angular momentum operktotg and I,
respectively. Thus at any time the state of the spin system, in quantum
mechanics the density operator,can be represented as a sum of different
amounts of these three operators
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oft) =a(t)1, +b(t)1, +ct)1,

The amounts of the three operators will vary with time during pulses and
delays. Thisexpression of the density operator as a combination of the spin
angular momentum operators is exactly analogous to specifying the three
components of a magnetization vector.

At equilibrium the density operator is proportional to I, (there is only z-
magnetization present). The constant of proportionality is usually
unimportant, so it is usual to write ge = |.

2.2.2 Hamiltoniansfor pulsesand delays
In order to work out how the density operator varies with time we need to

know the Hamiltonian (which is also an operator) which is acting during
that time.

The free precession Hamiltonian (i.e. that for adelay), Hree, iS

Hfree = O,

In the vector model free precession involves arotation at frequency (2 about
the z-axis; in the quantum mechanical picture the Hamiltonian involves the
z-angular momentum operator, |, — there is a direct correspondence.

The Hamiltonian for a pulse about thexis, Hpuse, iS

Hpulse,x =l

and for a pulse about tlyeaxis it is

Hpusey = awily

Again there is a clear connection to the vector model where pulses result in
rotations about the- or y-axes.

2.2.3 Equation of motion

The density operator at tinieo(t), is computed from that at time 6(0) ,
using the following relationship

o(t) = exp(—iHt) o(0) exp(iHt)

whereH is the relevant hamiltonian. H and o are expressed in terms of
the angular momentum operators if turns out that this equation can be solved
easily with the aid of a few rules.

Suppose that arx-pulse, of durationt,, is applied to equilibrium
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magnetization. In this situation H = wlx and o(0) = I, the equation to be
solved is

a(tp) = exp(—ia)ltpl X) [, expﬁa)ltp IX)

Such equations involving angular momentum operators are common in
guantum mechanics and the solution to them are aready all know. The
identity required here to solve this equation is

exp(—iax) Izexp(iélx)zcoseIz—sin6’|y [2.1]

This is interpreted as a rotation of 1, by an angle 8 about the x-axis. By
putting 8= at, thisidentity can be used to solve Eqgn. [2.1]

a(tp) =coxwt, |, —sinwt,

The result is exactly as expected from the vector model: a pulse about the x-
axis rotates z-magnetization towards they-axis, with a sinusoidal
dependence on the flip angi,

2.2.4 Standard rotations

Given that there are only three operators, there are a limited number of
identities of the type of Egn. [2.1]. They all have the same form

exp(— 4 a) {old operator} exp(i a a)
= cos@ {old operator} +sin@ { new operator}

where {old operator}, {new operator} arid are determined from the three
possible angular momentum operators according to the following diagrams;
the label in the centre indicates which axis the rotation is about

/\/\yx/\
NN AN

Angle of rotation = Qt for offsets and axt, for pulses

First example: find the result of rotating the operajdoy 8 about thex-
axis, that is

exp(—iax) Iyexp(iax)

24



For rotations about x the middle diagram |1 is required. The diagram shows
that 1y (the "old operator") is rotated to I, (the "new operator"). The required
identity istherefore

exp(- 16x) lyexp(i8y) = cosbly + sinbl,
Second example: find the result of

exp(-i8y) {- 1} exp(id)

This is a rotation about y, so diagram 11l is required. The diagram shows
that 4, (the "old operator") is rotated to.—{the "new operator"). The
required identity is therefore

exp(—iay){— Iz}exp(iay)zcosﬁ{— IZ} +sin0{—lx}

=-cosf |, - sing I,

Finally, note that a rotation of an operator about its own axis has no effect
e.g. arotation of 1, about x leaves I unaltered.

2.2.5 Shorthand notation

To save writing, the arrow notation is often used. In this, the term Ht is
written over an arrow which connects the old and new density operators.
So, for example, the following

oft,) = ewl-iat, 1, ) o0 epfat,! )
iswritten
o(0) 0t - oft,
For the case where {0) = I,

I, 0 i coswit, I, —sinat, |,
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2.2.6 Example calculation: spin echo

a b e f
90°(x) ——delay r——180°(x) —— delay r—— acquire

At a the density operator idy— The transformation froma to b is free
precession, for which the Hamiltonian €l the delay r therefore
corresponds to a rotation about thaxis at frequency2. In the short-hand
notation this is

-1, 0t - o(b)

To solve this diagramt above is needed with the angle2s, the "new
operator" idy

-1, 0t - —cosQrl, +snQrl,

In words this says that the magnetization precesses froowards .

The pulse aboutx has the Hamiltonianwly; the pulse therefore
corresponds to a rotation aboutor a timet, such that the anglenty, is 77
radians. In the shorthand notation

—cosQr |, +snQrl, 08 - ofe) [2.2]

Each term on the left is dealt with separately. The first term is a rotation of
y aboutx; the relevant diagram is thus

—-cosQrl, U Py —cosQrcoswt, |, —cosQrsinat, |,

However, the flip angle of the pulseit,, is 77so the second term on the

right is zero and the first term just changes sign (@es—1); overall the
result is

-cosQrl, Dﬁchosery

The second term on the left of Eqn. [2.2] is easy to handle as it is unaffected
by a rotation about. Overall, the effect of the 180° pulse is then

—cosQrl, +sinQrl, O - cosQrl, +sinQrl, [2.3]
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As was shown using the vector model, the y-component just changes sign.
The next stage is the evolution of the offset for time 7. Again, each term on
the right of Egn. [2.3] is considered separately

cosQr 1, OB~ cosQreosQrl, —sinQrcosQrl,

snQrl, O - cosQrsnQrl, +sinQrsinQrl,

Collecting together the termsin I and |, the final result is

(cosQrcosQHs’nQrsinQr) |, +(cosQrsinQr - sinQ7cosQT) I,

The bracket multiplying Iy is zero and the bracket multiplying Iy is =1
because of the identity cos’@+ sin“@= 1. Thus the overall result of the spin
echo sequence can be summarised

|, OYergeaT L,

In words, the outcome is independent of the offset, ©, and the delay 7, even
though there is evolution during the delays. The offset is said to be
refocused by the spin echo.

In genera the sequence
—-7-180°%) — 17— [2.4]

refocuses any evolution due to offsets; this is a very useful feature which is
much used in multiple-pulse NMR experiments.

One further point is that as far as the offset is concerned the spin echo
sequence of Egn. [2.4] is just equivalent to 180°(

2.3 Operators for two spins

2.3.1 Product operatorsfor two spins

The product operator approach comes into its own when coupled spin Jr2 J12

systems are considered; such systems cannot be treated by the vector model| | | '
However, product operators provide a clean and simple description of t
important phenomena of coherence transfer and multiple quantum €2 2

coherence. The spectrum from two coupled
spins, with offsets &, and 2
(rad s™) and mutual coupling
. Ji2 (Hz).
2.3.2 Product operatorsfor two spins

For a single spin the three operators needed for a complete descriptign are
ly andl,. For two spins, three such operators are needed for each spin; an
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additional subscript, 1 or 2, indicates which spin they refer to.

l1, represents z-magnetization of spin 1, and I, likewise for spin 2. 1
represents x-magnetization on spin 1. As spin 1 and 2 are coupled, the
spectrum consists of two doublets and the operator 11, can be further
identified with the two lines of the spin-1 doublet. In the language of
product operators |1« is said to represent in-phase magnetization of spin 1;
the description in-phase means that the two lines of the spin 1 doublet have
the same sign and lineshape.

Following on in the same way |4 represents in-phase magnetization on
spin 2. 11y and |,y also represent in-phase magnetization on spins 1 and 2,
respectively, but this magnetization is aligned along y and so will give rise
to a different lineshape. Arbitrarily, an absorption mode lineshape will be
assigned to magnetization aligned along x and a dispersion mode lineshape
to magnetization along y.

Lo A

\K IZX 1 1 l2y
L R

_ o There are four additional operators which represent anti-phase
1he absorption and dispersion  magnetization: 211z, 2l1yl2z 2l1dax 21172y (the factors of 2 are needed for

lineshapes.  The absorption

lineshape is a maximum on  normalization purposes). The operator 21141, is described as magnetization
resonance, whereas the

dispersion goes through zero at 0N SPIN 1 which is anti-phase with respect to the coupling to spin 2.

this point. The "cartoon" forms
of the lineshapes are shown in
1 2 IlXIZZ

the lower part of the diagram. 2 hyh,
er A

2,

2 IlzIZX 1 2 IlzIZy ‘ I
) QIZI )

0,

Note that the two lines of the spin-1 multiplet are associated with different
Spin states of spin-2, and that in an anti-phase multiplet these two lines have
EX different signs. Anti-phase terms are thus sensitive to the spin states of the
B orepn2 coupled spins.
The two lines of the spin-d There are four remaining product operators which contain two transverse

doublet can be associated with ~ (i.e. X- Or y-operators) terms and correspond to multiple-quantum
different spin states of spin 2. coherences; they are not observable

Finally there is the term 21,1, which is also not observable and corresponds
to aparticular kind of non-equilibrium population distribution.
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2.3.3 Evolution under offsets and pulses

The operators for two spins evolve under offsets and pulses in the same way
as do those for asingle spin. The rotations have to be applied separately to
each spin and it must be remembered that rotations of spin 1 do not affect
spin 2, and vice versa.

For example, consider |1, evolving under the offset of spin 1 and spin 2.
The relevant Hamiltonian is

Hiree = il 1, + 0l 5,

where Q; and Q, are the offsets of spin 1 and spin 2 respectively. Evolution
under this Hamiltonian can be considered by applying the two terms
sequentialy (the order isimmaterial)

I, O -
P N
|, otitr . ol -

Thefirst "arrow" is arotation about z
I, O - cosQit 1, +sinQ,tl,, OB -

The second arrow leaves the intermediate state unaltered as spin-2 operators
have not effect on spin-1 operators. Overall, therefore

I, OBEFE S cosQutl, +snQitl,,

A second example is the term 2l 1415, evolving under a 90° pulse about the
y-axis applied to both spins. The relevant Hamiltonian is

H = a)ll ly + a)ll 2y
The evolution can be separated into two successive rotations

21 1, 0ty oty -

The first arrow affects only the spin-1 operators; a 90° rotatidy abouty
gives —1, (remembering thadxt = 772 for a 90° pulse)
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21, 1, 0P - cosat 21,1, —sinwltZIlz R i

oL 211, ot -

1x 2z lz 2z

The second arrow only affects the spin 2 operators; a 90° rotatioaboiut
y takes it tax

21,1, Oty 211, 0B L 21,1,

The overall result is that anti-phase magnetization of spin 1 has been
transferred into anti-phase magnetization of spin 2. Such a process is called
coherence transfer and is exceptionally important in multiple-pulse NMR.

2.3.4 Evolution under coupling

The new feature which arises when considering two spins is the effect of
coupling between them. The Hamiltonian representing this coupling is itself
a product of two operators:

HJ = 27ﬂ12 llz|22

wherelJ;, is the coupling in Hz.

Evolution under coupling causes the interconversion of in-phase and anti-
phase magnetization according to the following diagrams

/\/\
NN

angle = Tt

For example, in-phase magnetization alongecomes anti-phase along y
according to the diagrath

|, O EP® & cosmptly, +sinmd,t 20,1,

note that the angle is)ft i.e. half the angle for the other rotatiohsll|.

Anti-phase magnetization alorxgpbecomes in-phase magnetization along
y; using diagranV:

21,1, OFPHMF - cosm,t 21,1, +sinmdy,tl,,

2-10



The diagrams apply equally well to spin-2; for example
= 21,1, OB - —cosd,,t21,1,, +sin,tl,,

Complete interconversion of in-phase and anti-phase magnetization
requires a delay such that Tt = T2 i.e. adelay of 1/(2J12). A delay of 1/J;,
causes in-phase magnetization to change its sign:

I, OFPEltr ey 21,1, 1, OEPEIRCT0R - -1,

2.4 Spin echoes

It was shown in section 2.2.6 that the offset is refocused in a spin echo. In
this section it will be shown that the evolution of the scalar coupling is not
necessarily refocused.

2.4.1 Spin echoesin homonuclear spin system

In this kind of spin echo the 180° pulse affects both sp@st is a non-
selective pulse:

— 17— 180°k, to spin 1 and spin 2) —

At the start of the sequence it will be assumed that only in-pkase
magnetization on spin 1 is preseht. In fact the starting state is not
important to the overall effect of the spin echo, so this choice is arbitrary.

It was shown in section 2.2.6 that the spin echo applied to one spin
refocuses the offset; this conclusion is not altered by the presence of a
coupling so the offset will be ignored in the present calculation. This greatly
simplifies things.

For the first delayr only the effect of evolution under coupling need be
considered therefore:

|, O s - cosmy,r 1, +sin/d,T 21,1,

The 180° pulse affects both spins, and this can be calculated by applying the
180° rotation to each in succession

cosrd,,T |, +sinm,r 21,1, Ot Ofr -

where it has already been written in tlat, = 1 for a 180° pulse. The
180° rotation about for spin 1 has no effect on the operdtgrandl,,, and
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it Ssmply reverses the sign of the operator |y

cosrd,, i, +sinmd, 21,1, O - cosm,d,, —snm,r2i 1, 05

The 180° rotation aboutfor spin 2 has no effect on the operalggand
l1y, but simply reverses the sign of the operbtorThe final result is thus

cosrdy, 1, +sinm, 1211, O - cosm,d,, —sinmd, 1211,

01 - cosmd,, i, +sinmd,r21,1,,

Nothing has happened; the 180° pulse has left the operators unaffected! So,
for the purposes of the calculation it is permissible to ignore the 180° pulse
and simply allow the coupling to evolve forz.2 The final result can
therefore just be written down:

|, OO cos27,, 7 1y, +sin27,7 21,1,

From this it is easy to see that complete conversion to anti-phase
magnetization requires@;,7= 772 i.e. 7= 1/(4J12).

The calculation is not quite as simple if the initial state is choseég as
(see exercises), but the final result is just the same — the coupling evolves for
2r.

|, OO - —cos2m,, 71y, +sin27,7 21,1,
In fact, the general result is that the sequence
— 7—180°k, to spin 1 and spin 2) —
IS equivalent to the sequence
— 21— 180°k, to spin 1 and spin 2)

in which the offset is ignored and coupling is allowed to act for time 2
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2.4.2 Interconvertingin-phase and anti-phase states

So far, spin echoes have been demonstrated as being useful for generating
anti-phase terms, independent of offsets. For example, the sequence

90°(X) — 1/(4J1,) — 180°K) — 1/(4Jy) —

generates pure anti-phase magnetization.
Equally useful is the sequence

— 1/(4)y) — 180°K) — 1/(4)rp) —

which will convert pure anti-phase magnetization, such las;2into in-
phase magnetizatioh,.

2.4.3 Spin echoesin heteronuclear spin systems

If spin 1 and spin 2 are different nuclear species, sucfiCaandH, it is a
possible to choose to apply the 180° pulse to either or both spins; the™"*
outcome of the sequence depends on the pattern of 180° pulses. spin 2 _I]_
Sequencea has already been analysed: the result is that the offset is b
refocused but that the coupling evolves for time 2Sequenceb still spin1—— 1 T

refocuses the offset of spin 1, but it turns out that the coupling is also
refocused. Sequenceefocuses the coupling but leaves the evolution of the spin2

offset unaffected. c
spin 1 ¢

T
2.4.3.1 Sequenceb spin 2 —l]—

It will be assumed that the offset is refocused, and attention will thereforg g, st et can be appiod

nces that can be applied

restricted to the effect of the coupling o heteronuclear slpin systems.
The open rectangles represent
180° pulses.

I, O P & cosy,t 1, +sinmd,T 21,1,
The 180°K) pulse is only applied to spin 1
cos7d,, T |y, +sinmdy,7 21,1, 01 - cosm,r 1, —sin/, 7 21,,1,,[2.5]

The two terms on the right each evolve under the coupling during the second
delay:
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|
cosrd,,r |, Oty -
Cos7d,,TCoSTD,, T |, +sin7d,Tcosra,,T 21, 1,

—sin/y,r 21,1, 0P -
—CoS70,,7SINTD,,T 21, 1, +SiN7D,T SINTD,T |,

Collecting the terms together and noting that cos’@+ sin’6=1 the fina
resultisjust 11x. Inwords, the effect of the coupling has been refocused.

2.4.3.2 Sequencec

As there is no 180° pulse applied to spin 1, the offset of spin 1 is not
refocused, but continues to evolve for time 2The evolution of the
coupling is easy to calculate:

|, O EPEE - cosm,r 1y, +sinmd,T 21,1,
This time the 180%) pulse is applied to spin 2
oS, T |y, +sinmd,T 21,1, O - cosm,r 1, —sin,r 21,1,

The results is exactly as for sequebd&qn. [2.5]), so the final result is the
same.e. the coupling is refocused.

2.4.3.3 Summary

In heteronuclear systems it is possible to choose whether or not to allow the
offset and the coupling to evolve; this gives great freedom in generating and
manipulating anti-phase states which play a key role in multiple pulse NMR
experiments.

2.5 Multiple quantum terms

25.1 Coherenceorder

In NMR the directly observable quantity is the transverse magnetization,
which in product operators is represented by terms su¢hx asd 2i,l.

Such terms are examples of single quantum coherences, or more generally
coherences with ordep, = 1. Other product operators can also be
classified according to coherence order. 21,1, has p = 0 andlzl,, has

bothp = 0 (zero-quantum coherence) and +2 (double quantum coherence).
Only single quantum coherences are observable.

In heteronuclear systems it is sometimes useful to classify operators
according to their coherence orders with respect to each spin. So, for
example, Pyl hasp = 0 for spin 1 ang = =1 for spin 2.
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2.5.2 Raising and lowering operators

The classification of operators according to coherence order is best
carried out be re-expressing the Cartesian operators I, and |y in terms of the
raising and lowering operators, | and I_, respectively. These are defined as
follows

Lo=1 +il, =1, -l [2.6]

where i is the square root of —1 (further details of why these operators are
called the raising and lowering operators will be given in lecturd.lhas
coherence order +1 arld has coherence order —1; coherence order is a
signed quantity.

Using the definitions of Eqn. [2.6} andl, can be expressed in terms of
the raising and lowering operators

X

N~

(L+12)  1,=2(,-1) [2.7]

from which it is seen that |, and Iy are both mixtures of coherences with p =
+1 and -1.

The operator producti gl can be expressed in terms of the raising and
lowering operators in the following way (note that separate operators are
used for each spitj. and I.)

[2.8]

The first term on the right of Eqn. [2.8] has p = (+1+1) = 2 and the second

term has p = (-1-1) = —2; both are double quantum coherences. The third
and fourth terms both haye= (+1-1) = 0 and are zero quantum coherences.
The value ofp can be found simply by noting the number of raising and
lowering operators in the product.

The pure double quantum part of.Py is, from Eqn. [2.8],

double quantum part[ZI 1XI2X] = %(I wlon F1,1 2_) [2.9]

The raising and lowering operators on the right of Egn. [2.9] can be re-
expressed in terms of the Cartesian operators:

311, +1,1,) =%[(|1x il 1o #i00y ) # (100 =i, )12 —ilzy)]

=4[21,1,, +21,1,,]

ly 2y
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So, the pure double quantum part of 2l IS %(lexl2X +21,1 ); by a

ly " 2y
similar method the pure zero quantum part can be shown to be

%(ZI w2 =21 1y|2y) . Some further useful relationships are given in section
29

2.5.3 Definition of coherence order

The formal definition of coherence order depends on the response of a
particular operator to arotation about the z-axis. A coherence or operator of
order p acquires a phase pgwhen rotated about the z-axis through an angle

@
ol?) O PPEY Pt - ol exp(-ipg)

This property will be used extensively as part of the description of
coherence selection by phase cycling or gradient pulses, lecture 4.

2.6 Three spins

The product operator formalism can be extended to three or more spins. No
really new features arise, but some of the key ideas will be highlighted in
this section. The description will assume that spin 1 is coupled to spins 2
and 3 with coupling constants J;» and Ji3; in the diagrams it will be
assumed that Jq» > Ji3.

2.6.1 Typesof operators

l1x represents in-phase magnetization on spin 1, 2ll,, represents
magnetization anti-phase with respect to the coupling to spin 2 and 2l1l3;
represents magnetization anti-phase with respect to the coupling to spin 3.
411,12, 3, represents magnetization which is doubly anti-phase with respect to
the couplings to both spins 2 and 3.
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As in the case of two spins, the presence of more than one transverse
operator in the product represents multiple quantum coherence. For
example, 2lilo is a mixture of double- and zero-quantum coherence
between spins 1 and 2. The product 41,243, is the same mixture, but anti-
phase with respect to the coupling to spin 3. Products such as 4l ol ax
contain, amongst other things, triple-quantum coherences.

2.6.2 Evolution

Evolution under offsets and pulses is simply a matter of applying
sequentially the relevant rotations for each spin, remembering that rotations
of spin 1 do not affect operators of spins 2 and 3. For example, the term
2l 1,12, evolves under the offset in the following way:

21,1, 08 - 08 - 08 - cosQut 21,1, +sinQit 21,1,

The first arrow, representing evolution under the offset of spin 1, affects
only the spin 1 operator 1. The second arrow has no effect as the spin 2
operator 1,, and this is unaffected by a z-rotation. The third arrow also has
no effect as there are no spin 3 operators present.

The evolution under coupling follows the same rules as for a two-spin
system. For example, evolution of 11« under the influence of the coupling to
spin 3 generates 2l 1yl3;

I, O PP - cosrd,gt 1y, +sin7dyt 21,1,

Further evolution of the term 214y I3, under the influence of the coupling to
Spin 2 generates a double anti-phase term

21,1, O - cosmpt 21,1, —sinmdygt 411,15,

In this evolution the spin 3 operator if unaffected as the coupling does not
involve this spin. The connection with the evolution of |1, under a coupling
can be made more explicit by writing 213, as a"constant” y

yly, OEPEE L cosdy,t yly, —sinmdyt 2p1,,1,
which compares directly to

I, O & cosmpt 1y, —sinmt 21,1,
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2.7 Alternative notation

In this chapter different spins have been designated with a subscript 1, 2, 3
... Another common notation is to distinguish the spins by using a different
letter to represent their operators; commonly | and S are used for two of the
symbols

2|1x|22 = 2IXSZ

Note that the order in which the operators are written is not important,
although it is often convenient (and tidy) aways to write them in the same
sequence.

In heteronuclear experiments a notation is sometimes used where the
letter represents the nucleus. So, for example, operators referring to protons
are given the letter H, carbon-13 atoms the letter C and nitrogen-15 atoms
the letter N; carbonyl carbons are sometimes denoted C'. For example,
ACH N, denotes magnetization on carbon-13 which is anti-phase with
respect to coupling to both proton and nitrogen-15.

2.8 Conclusion

The product operator method as described here only applies to spin-half
nuclei. It can be extended to higher spins, but significant extra complexity
is introduced; details can be found in the article by Sgreetsan (Prog.
NMR Spectrosc. 16, 163 (1983)).

The main difficulty with the product operator method is that the more
pulses and delays that are introduced the greater becomes the number of
operators and the more complex the trigonometrical expressions multiplying
them. If pulses are either 90° or 180° then there is some simplification as
such pulses do not increase the number of terms. As will be seen in lecture
3, it is important to try to simplify the calculation as much as possible, for
example by recognizing when offsets or couplings are refocused by spin
echoes.

A number of computer programs are available for machine computation

using product operators within programs suchMashematica or Maple.
These can be very labour saving.
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2.9 Multiple -quantum coherence

2.9.1 Multiple-quantum terms

In the product operator representation of multiple quantum coherences it is
usual to distinguish between active and passive spins. Active spins
contribute transverse operators, such as Iy, Iy and 1., to the product; passive
spins contribute only z-operators, ;. In a sense the spins contributing
transverse operators are "involved" in the coherence, while those
contributing z-operators are simply spectators.

For double- and zero-quantum coherence in which spinsi and | are active
it is convenient to define the following set of operators which represent pure
multiple quantum states of given order. The operators can be expressed in
terms of the Cartesian or raising and lowering operators.

double quantum, p = +2

DQ) = 4(21, 1, -21,1, )= 3(1.1, +11 )
DQY) =4(21,1, +21,1, )= &(1.1,, -1.1,)
zero quantum, p=0

zQU = 2(21,0, + 21,1, )= 21,1, 1,0,
zQU =221, -21,0, )= 2 (10— )

2.9.2 Evolution of multiple -quantum terms

2.9.2.1 Evolution under offsets

The double- and zero-quantum operators evolve under offsets in a way
which is entirely analogous to the evolution of Iy and |, under free
precession except that the frequencies of evolution are (2 + ) and (2 —
) respectively:

QW o H'EfLy - cod@, +0))
pQl) o H'EfLy - cod@, +0))

J

t DQE(‘J) +sin(Qi +Qj)t DQSJ)
(oci1-sr(o, -0 ool
ZQ(Xii) 0 Mt - cod Q, —Qj)t ZQ(Xii) +sin(Qi —Qj)t ZQ(y”)

QW) 0¥y . codQ, -0, J1zQW -sin(Q, -, J1zQl

l

2.9.2.2 Evolution under couplings

Multiple quantum coherence between spiasdj does not evolve under the
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influence of the coupling between the two active spins, i and j.

Double- and zero-quantum operators evolve under passive couplingsin a
way which is entirely analogous to the evolution of I, and Iy; the resulting
multiple quantum terms can be described as being anti-phase with respect to
the effective couplings:

DQU M . cosrdpgt DQUW +cosmyg 4t 21, DQY
DQY M . cosrdpget DQU —sinryg .t 21,,DQY
zQW M . cos7, g 4t ZQW +sind,q 4t 21,,2QY
zQW M~ o870t ZQYW —sinq 4t 21,,2QY

Joor 1S the sum of the couplings between spini and all other spins plus the
sum of the couplings between spin j and all other spins. J, 4 is the sum of

the couplings between spin i and al other spins minus the sum of the
couplings between spin j and all other spins.

For example in a three-spin system the zero-quantum coherence between
spins 1 and 2, anti-phase with respect to spin 3, evolves according to

21,2Q%? M - cos7D gt 21,,2Q0? —sin7, t ZQY?
where JZQeff =J, —Jy

Further details of multiple-quantum evolution can be found in section 5.3
of Ernst, Bodenhausen and Wokaun Principles of NMR in One and Two
Dimensions (Oxford University Press, 1987).
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3 Basic concepts for
two-dimensional NMR

3.1 Introduction

The basic ideas of two-dimensional NMR will be introduced by reference to
the appearance of a COSY spectrum; later in this lecture the product
operator formalism will be used to predict the form of the spectrum.

Conventional NMR spectra (one-dimensional spectra) are plots of
intensityvs. frequency; in two-dimensional spectroscopy intensity is plotted
as a function of two frequencies, usually calgcandF,. There are various
ways of representing such a spectrum on paper, but the one most usually
used is to make a contour plot in which the intensity of the peaks is
represented by contour lines drawn at suitable intervals, in the same way as a
topographical map. The position of each peak is specified by two frequency
co-ordinates corresponding 8 andF,. Two-dimensional NMR spectra
are always arranged so that theco-ordinates of the peaks correspond to
those found in the normal one-dimensional spectrum, and this relation is
often emphasized by plotting the one-dimensional spectrum alongsiflg the
axis.

The figure shows a schematic COSY spectrum of a hypothetical molecule’x
containing just two protons, A and X, which are coupled together. The one=

Oa

dimensional spectrum is plotted alongside Baeaxis, and consists of the Sa
familiar pair of doublets centred on the chemical shifts of A and.>8nd

o« respectively. In the COSY spectrum, theco-ordinates of the peaks in | . 5
the two-dimensional spectrum also correspond to those found in the norm x

one-dimensional spectrum and to emphasize this point the one-dimensigQnal... cosy spectrum for
spectrum has been plotted alongsideRhaxis. It is immediately clear thatwo coupled spins, A and X
this COSY spectrum has some symmetry about the diageralF, which

has been indicated with a dashed line.

In a one-dimensional spectrum scalar couplings give rise to multiplets in
the spectrum. In two-dimensional spectra the idea of a multiplet has to be
expanded somewhat so that in such spectra a multiplet consists of an array
of individual peaks often giving the impression of a square or rectangular
outline. Several such arrays of peaks can be seen in the schematic COSY
spectrum shown above. These two-dimensional multiplets come in two
distinct types: diagonal-peak multiplets which are centred around the same
F, and F, frequency co-ordinates and cross-peak multiplets which are
centred around differerff; and F, co-ordinates. Thus in the schematic
COSY spectrum there are two diagonal-peak multiplets centred at
F1=F,=0dx andF1 =F, =&, one cross-peak multiplet centredFat= Jx,

F, = o« and a second cross-peak multiplet centréd atdx, F» = Oa.

The appearance in a COSY spectrum of a cross-peak muRiptedn,
F, = d¢ indicates that the two protons at shifis and & have a scalar
coupling between them. This statement is all that is required for the analysis
of a COSY spectrum, and it is this simplicity which is the key to the great
utility of such spectra. From a single COSY spectrum it is possible to trace
out the whole coupling network in the molecule.
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3.1.1 General Scheme for two-Dimensional NMR

In one-dimensional pulsed Fourier transform NMR the signal is recorded as
a function of one time variable and then Fourier transformed to give a
spectrum which is a function of one frequency variable. In two-dimensional
NMR the signal is recorded as a function of two time variables)dt,, and

the resulting data Fourier transformed twice to yield a spectrum which is a
function of two frequency variables. The general scheme for two-

dimensional spectroscopy is

_- evolution - detection
11 12

In the first period, called the preparation time, the sample is excited by
one or more pulses. The resulting magnetization is allowed to evolve for the
first time period,t;. Then another period follows, called the mixing time,
which consists of a further pulse or pulses. After the mixing period the
signal is recorded as a function of the second time varigble,This
sequence of events is called a pulse sequence and the exact nature of the
preparation and mixing periods determines the information found in the
spectrum.

It is important to realize that the signal is not recorded during thettime
but only during the tim& at the end of the sequence. The data is recorded
at regularly spaced intervals in botlandt,.

The two-dimensional signal is recorded in the following way. Rirss,
set to zero, the pulse sequence is executed and the resulting free induction
decay recorded. Then the nuclear spins are allowed to return to equilibrium.
t; is then set td\;, the sampling interval ify, the sequence is repeated and a
free induction decay is recorded and stored separately from the first. Again
the spins are allowed to equilibrate,is set to 2;, the pulse sequence
repeated and a free induction decay recorded and stored. The whole process
IS repeated again for = 3A;, 4/ and so on until sufficient data is recorded,
typically 50 to 500 increments &f Thus recording a two-dimensional data
set involves repeating a pulse sequence for increasing valugsaofi
recording a free induction decay as a functiona fifr each value df.

3.1.2 Interpretation of peaksin a two-dimensional spectrum
Within the general framework outlined in the previous section it is now

possible to interpret the appearance of a peak in a two-dimensional spectrum
at particular frequency co-ordinates.
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Suppose that in some unspecified two-dimensional spectrum a peak appears
at F, = 20 Hz,F, = 90 Hz (spectruna above) The interpretation of this
peak is that a signal was present dutinghich evolved with a frequency of

20 Hz. During the mixing time thisame signal was transferred in some
way to another signal which evolved at 90 Hz dutjng

Likewise, if there is a peak &; = 20 Hz,F, = 20 Hz (spectruni) the
interpretation is that there was a signal evolving at 20 Hz dayimghich
was unaffected by the mixing period and continued to evolve at 20 Hz
during t,. The processes by which these signals are transferred will be
discussed in the following sections.

Finally, consider the spectrum showrcinHere there are two peaks, one
at F; = 20 Hz,F; = 90 Hz and one &; = 20 Hz,F, = 20 Hz. The
interpretation of this is that some signal was present duringich evolved
at 20 Hz and that during the mixing period part of it was transferred into
another signal which evolved at 90 Hz during The other part remained
unaffected and continued to evolve at 20 Hz. On the basis of the previous
discussion of COSY spectra, the part that changes frequency during the
mixing time is recognized as leading to a cross-peak and the part that does
not change frequency leads to a diagonal-peak. This kind of interpretation is
a very useful way of thinking about the origin of peaks in a two-dimensional
spectrum.

It is clear from the discussion in this section that the mixing time plays a
crucial role in forming the two-dimensional spectrum. In the absence of a
mixing time, the frequencies that evolve durtpgndt, would be the same
and only diagonal-peaks would appear in the spectrum. To obtain an
interesting and useful spectrum it is essential to arrange for some process
during the mixing time to transfer signals from one spin to another.

3.2 EXSY and NOESY spectra in detail

In this section the way in which the EXSY (EXchange SpectroscopYj & Trix 2
sequence works will be examined; the pulse sequence is shown opposite.
This experiment gives a spectrum in which a cross-peak at frequency_co-

. .. . . ] The pulse sequence for EXSY
ordinatesF; = dn, F2, = & indicates that the spin resonating @t iS (and NOESY). All pulses have

chemically exchanging with the spin resonatingsat 90 flip angles.

The pulse sequence for EXSY is shown opposite. The effect of the
sequence will be analysed for the case of two spins, 1 and 2, but without any
coupling between them. The initial state, before the first pulse, is
equilibrium magnetization, representedlast+ |,,; however, for simplicity
only magnetization from the first spin will be considered in the calculation.
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The first 90° pulse (of phasg rotates the magnetization ontp —

I, Ot - 0= -1,

(the second arrow has no effect as it involves operators of spin 2). Next
follows evolution for time;

-1, OB - OB - —cosQyt, 1, +sinQut, 1,

again, the second arrow has no effect. The second 90° pulse turns the first
term onto the-axis and leaves the second term unaffected

—cosQyt, I,, Ot OB - —cosQyt, 1,
snQt, I, O - 0 - snQypt, 1y,

Only thel,, term leads to cross-peaks by chemical exchange, so the other
term will be ignored (in an experiment this is achieved by appropriate
coherence pathway selection — see lecture 4). The effect of the first part of
the sequence is to generate, at the start of the mixing tige.somez-
magnetization on spin 1 whose size depends, via the cosine tetprarah

the frequency, @, with which the spin 1 evolves during. The
magnetization is said to be frequency labelled.

During the mixing time,rmix, Spin 1 may undergo chemical exchange
with spin 2. If it does this, it carries with it the frequency label that it
acquired durind;. The extent to which this transfer takes place depends on
the details of the chemical kinetics; it will be assumed simply that during

Tmix @ fractionf of the spins of type 1 chemically exchange with spins of type
2. The effect of the mixing process can then be written

~cosQ,t, I, OPP - ~(1- f)cosQyt, I, - f cosQ,t, 1,,
The final 90° pulse rotates ttignagnetization back onto tlyeaxis

- (1- f)cosQ,t, 1., OTFtH . OFFE - (1- f)cosQut, I,
— f cosQ,t, 1,, O - 0T - fcosQyt, 1,
Although the magnetization started on spin 1, at the end of the sequence
there is magnetization present on spin 2 — a process called magnetization

transfer. The analysis of the experiment is completed by allowingythe
andl,, operators to evolve for tintg
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(1- f)cosQyt, 1, 0BT - 0BT

(1— f)cosQlt2 cosQyt, I, —(1— f)siant2 cosQ.t, 1,
f cosQy, 1,, O Belr - O Ty -

f cosQ,t, cosQpt, I,, - f sinQ,t,cosQt, I,,

If it is assumed that themagnetization is detected duridthis is an
arbitrary choice, but a convenient one), the time domain signal has two
terms:

(1— f)cosQlt2 cosQ,t, + f cosQ,t, cosQ,t,

The crucial thing is that the amplitude of the signal recorded dtyisg
modulated by the evolution during This can be seen more clearly by
imagining the Fourier transform, with respecttipof the above function.
The cos{it;) and cos@.t,) terms transform to give absorption mode
signals centred a@; and 2, respectively in thé=, dimension; these are
denoted A? and A{? (the subscript indicates which spin, and the
superscript which dimension). The time domain function becomes

(1- £)A? cosQt, + fA? cosQ,t,

If a series of spectra recordedtaprogressively increases are inspected it
would be found that the caB(t,) term causes a change in size of the peaks
at ; andQ, — this is the modulation referred to above.

Fourier transformation with respect togives peaks with an absorption
lineshape, but this time in tHe dimension; an absorption mode signal at

@ in Fy is denotedA"”. The time domain signal becomes, after Fourier
transformation in each dimension

(1- 1) AP AP + 1AL A
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\ Fourier

transform

O frequency
The Fourier transform of a
decaying cosine function
cosQt exp(-t'T;) is an
absorption mode Lorentzian
centred at frequency Q.

Thus, the final two-dimensional spectrum is predicted to have two peaks.
One is atly, F2) = (€21, 1) — this is a diagonal peak and arises from those
spins of type 1 which did not undergo chemical exchange daging The
second is atHy, F,) = (@21, ) — this is a cross peak which indicates that
part of the magnetization from spin 1 was transferred to spin 2 during the
mixing time. It is this peak that contains the useful information. If the
calculation were repeated starting with magnetization on spin 2 it would be
found that there are similar peaks @,(€2,) and (2., (2,).

The NOESY (Nuclear Overhauser Effect SpectrocopY) spectrum is
recorded using the same basic sequence. The only difference is that during
the mixing time the cross-relaxation is responsible for the exchange of
magnetization between different spins. Thus, a cross-peak indicates that
two spins are experiencing mutual cross-relaxation and hence are close in
space.

Having completed the analysis it can now be seen how the
EXCSY/NOESY sequence is put together. First, the 49>-90° sequence
is used to generate frequency labeltetiagnetization. Then, duringyx,
this magnetization is allowed to migrate to other spins, carrying its label
with it. Finally, the last pulse renders theagnetization observable.

3.3 More about two-dimensional transforms

From the above analysis it was seen that the signal observed duray t
an amplitude proportional to cd2{t;); the amplitude of the signal observed
during t depends on the evolution duribg For the first increment af
(t1 = 0), the signal will be a maximum, the second increment will have size
proportional to cogR1A1), the third proportional to cagf24,), the fourth to
cos(@:3;) and so on. This modulation of the amplitude of the observed
signal by the; evolution is illustrated in the figure below.

In the figure the first column shows a series of free induction decays that
would be recorded for increasing valued;cénd the second column shows
the Fourier transforms of these signals. The final step in constructing the
two-dimensional spectrum is to Fourier transform the data alond;the
dimension. This process is also illustrated in the figure. Each of the spectra
shown in the second column are represented as a series of data points, where
each point corresponds to a differelft frequency. The data point
corresponding to a particul&, frequency is selected from the spectra for
ty=,t1 =, t; = 2A; and so on for all thg values. Such a process results
in a function, called an interferogram, which kgas the running variable.
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lllustration of how the modulation of a free induction decay by evolution during £ gives rise to a peak in
the two-dimensional spectrum. In the left most column is shown a series of free induction decays that
would be recorded for successive values of fi; f; increases down the page. Note how the amplitude of
these free induction decays varies with t, something that becomes even plainer when the time domain
signals are Fourier transformed, as shown in the second column. In practice, each of these F, spectra
in column two consist of a series of data points. The data point at the same frequency in each of these
spectra is extracted and assembled into an interferogram, in which the horizontal axis is the time #.
Several such interferograms, labelled a to g, are shown in the third column. Note that as there were
eight F, spectra in column two corresponding to different #; values there are eight points in each
interferogram. The F, frequencies at which the interferograms are taken are indicated on the lower
spectrum of the second column. Finally, a second Fourier transformation of these interferograms gives
a series of F; spectra shown in the right hand column. Note that in this column F, increases down the
page, whereas in the first column t; increase down the page. The final result is a two-dimensional
spectrum containing a single peak.

Several interferograms, labellea to g, computed for differenf,
frequencies are shown in the third column of the figure. The partiewlar
frequency that each interferogram corresponds to is indicated in the bottom
spectrum of the second column. The amplitude of the signal in each
interferogram is different, but in this case the modulation frequency is the
same. The final stage in the processing is to Fourier transform these
interferograms to give the series of spectra which are shown in the right
most column of the figure. These spectra haveuRning horizontally and
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Pulse sequence for the two-
dimensional COSY experiment

F, running down the page. The modulation of the time domain signal has
been transformed into a single two-dimensional peak. Note that the peak
appears on several traces corresponding to différefrequencies because

of the width of the line irfr,.

The time domain data in thg dimension can be manipulated by
multiplying by weighting functions or zero filling, just as with conventional
free induction decays.

3.4 Two-dimensional experiments using coherence transfer
through J-coupling

Perhaps the most important set of two-dimensional experiments are those
which transfer magnetization from one spin to another via the scalar

coupling between them. As was seen in section 2.3.3, this kind of transfer
can be brought about by the action of a pulse on an anti-phase state. In
outline the basic process is

I, OB 21, 1, OBPPEET- 21,1,
spinl spin 2

34.1 COSY

The pulse sequence for this experiment is shown opposite. It will be
assumed in the analysis that all of the pulses are applied abotatiseand

for simplicity the calculation will start with equilibrium magnetization only
on spin 1. The effect of the first pulse is to geneyateagnetization, as has
been worked out previously many times

I, OBt - 0B -1,

This state then evolves for tinie first under the influence of the offset of
spin 1 (that of spin 2 has no effect on spin 1 operators):

-1, OB 5 —cosQut, I, +sinQyt, I,
Both terms on the right then evolve under the coupling

—cosQt, 1, O B 4E - —cosm,,t, cosQut, I,, +sinm,t, cosQut, 21,1,
snQut, 1, OB - cosmd,t, SnQut, |y, +sin7dyt sinQut, 21, 1,

That completes the evolution under Now all that remains is to consider

the effect of the final pulse, remembering that the effect of the pulse on both
spins needs to be computed. Taking the terms one by one:
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—cosrd,t, cosQut, |, O 7% - O TFE - —cosrd,,t, cosQit, |,
sinmd,t, cosQ,t, 21, |,, O % - 0P - —sin/,,t, cosQ,t, 21, 1,
cosmd,t, snQ,t, I, 07 O - cosrdt, SnQut, |,
sin7dp,t, sinQut, 21, 1, OB - DT - —sin/d,t, SnQut, 21,1, {4

{
o
{
{

Terms {1} and {2} are unobservable. Term {3} corresponds to in-phase
magnetization of spin 1, aligned along taxis. Thet; modulation of this
term depends on the offset of spin 1, so a diagonal peak cent@d@4) (is
predicted. Term {4} is the really interesting one. It shows that anti-phase time
magnetization on spin 1]l is transferred to anti-phase magnetization Fourier
on spin 2, P ly,; this is an example of coherence transfer. Term {4} transform
appears as observable magnetization on spin 2, but it is modul&tevitim
the offset of spin 1, thus it gives rise to a cross-peak centregy a,f. It
has been shown, therefore, how cross- and diagonal-peaks arise in a COSY
spectrum.

Some more consideration should be give to the form of the cross- an
diagonal peaks. Consider again term {3}: it will give rise to an in-phase
multiplet inF,, and as it is along theaxis, the lineshape will be dispersive.

Q| frequency

The form of the modulation i, can be expanded, using the formulghe Fourier transform of a
decaying sine function

cosAsnB = %{SI n( B+ A) + sm( B- A)} to give sinQt exp(-t/Ty) is a dispersion

mode Lorentzian centred at

frequency Q.

cosTd,t, SnQyt, = Hsin(Qu, + ) +sin(Qyt, - 7,,t))

Two peaks i, are expected aP; + 1U;,, these are just the two lines of the
spin 1 doublet. In addition, since these are sine modulated they will have
the dispersion lineshape. Note that both components in the spin 1 multiplgt
observed inF, are modulated in this way, so the appearance of the twoj,
dimensional multiplet can best be found by "multiplying together" the }
multiplets in the two dimensions, as shown opposite. In addition, all four
components of the diagonal-peak multiplet have the same sign, and have the

. e J Schematic view of the diagonal
double dispersion lineshape illustrated below beak from & COSY spectrum.

The squares are supposed to
indicate the two-dimensional

illustrated below

W
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The double dispersion lineshape seen in pseudo 3D and as a contour plot; negative contours are
indicated by dashed lines.

Term {4} can be treated in the same way. kwe know that this term
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Schematic view of the cross-
peak multiplet from a COSY
spectrum. The circles are
supposed to indicate the two-
dimensional double absorption

lineshape illustrated below;
filled circles represent positive
intensity, open represent

negative intensity.

gives rise to an anti-phase absorption multiplet on spin 2. Using the
relationshipsinBsin A=4{-cogB + A) +cog B- A)} the modulation irt
can be expanded

snm,t, SnQ.t = %{ - cos(Qltl + mlztl) + cos(Qlt1 - mlzt)}

Two peaks inF;, at 2, + TUs,, are expected; these are just the two lines of
the spin 1 doublet. Note that the two peaks have opposite signs — that is
they are anti-phase ;. In addition, since these are cosine modulated we
expect the absorption lineshape (see section 3.2). The form of the cross-
peak multiplet can be predicted by "multiplying together" Fieand F,
multiplets, just as was done for the diagonal-peak multiplet. The result is
shown opposite. This characteristic pattern of positive and negative peaks
that constitutes the cross-peak is know as an anti-phase square array.

The double absorption lineshape seen in pseudo 3D and as a contour plot.

COSY spectra are sometimes plotted in the absolute value mode, where
all the sign information is suppressed deliberately. Although such a display
Is convenient, especially for routine applications, it is generally much more
desirable to retain the sign information. Spectra displayed in this way are
said to be phase sensitive; more details of this are given in section 3.6.

As the coupling constant becomes comparable with the linewidth, the
positive and negative peaks in the cross-peak multiplet begin to overlap and
cancel one another out. This leads to an overall reduction in the intensity of
the cross-peak multiplet, and ultimately the cross-peak disappears into the
noise in the spectrum. The smallest coupling which gives rise to a cross-
peak is thus set by the linewidth and the signal-to-noise ratio of the
spectrum.

3.4.2 Double-quantum filtered COSY (DQF COSY)

The conventional COSY experiment suffers from a disadvantage which
arises from the different phase properties of the cross- and diagonal-peak
multiplets. The components of a diagonal peak multiplet are all in-phase
and so tend to reinforce one another. In addition, the dispersive tails of
these peaks spread far into the spectrum. The result is a broad intense
diagonal which can obscure nearby cross-peaks. This effect is particularly
troublesome when the coupling is comparable with the linewidth as in such
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cases, as was described above, cancellation of anti-phase components in the
cross-peak multiplet reduces the overall intensity of these multiplets.

This difficulty is neatly side-stepped by a modification called doubIeI t Il t
quantum filtered COSY (DQF COSY). The pulse sequence is shown
OppOSite' The pulse sequence for DQF
Up to the second pulse the sequence is the same as COSY. Howewssyitthe delay between the
is arranged that only double-quantum coherence present during the (RSP Puses is usualy just a
short) delay between the second and third pulses is ultimately allowed to
contribute to the spectrum. Hence the name, "double-quantum filtered", as
all the observed signals are filtered through double-quantum coherence. The
final pulse is needed to convert the double quantum coherence back into
observable magnetization. This double-quantum derived signal is selected
by the use of coherence pathway selection using phase cycling or field

gradient pulses, further details of which will be given in lecture 4.

In the analysis of the COSY experiment, it is seen that after the second
90° pulse it is term {2} that contains double-quantum coherence; this can be
demonstrated explicitly by expanding this term in the raising and lowering
operators, as was done in section 2.5

20,0, =2x3(1, + 1, )x2(1, - 1,.)

-1 - (=
_2i(|1+|2+ |1—|2—)+2i( |1+|2—+|1—|2+)

This term contains both double- and zero-quantum coherence. The pure
double-quantum part is the term in the first bracket on the right; this term
can be re-expressed in Cartesian operators:

2_1i(|1+|2+ _ |1_|2_) :2_1i[(|1X +i|1y)(|1x +illy)+(|2X —ilzy)(lzX —ilzy)]

=4[21,1,, +21,1,,]

The effect of the last 90X pulse on the double quantum part of term {2} is
thus

— 387, 005t (21,1, +21,1,, ) O F - OFE -

1x " 2y

—%siniﬂlztlcosQltl(lexl22 +21,1 2X)

The first term on the right is anti-phase magnetization of spin 1 aligned
along the »axis; this gives rise to a diagonal-peak multiplet. The second
term is anti-phase magnetization of spin 2, again aligned alotings will

give rise to a cross-peak multiplet. Both of these terms have the same
modulation int;, which can be shown, by a similar analysis to that used
above, to lead to an anti-phase multipleEin As these peaks all have the
same lineshape the overall phase of the spectrum can be adjusted so that
they are all in absorption; see section 3.6 for further details. In contrast to
the case of a simple COSY experiment both the diagonal- and cross-peak
multiplets are in anti-phase in both dimensions, thus avoiding the strong in-
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The pulse sequence for HMQC.
Filled rectangles represent 90°
pulses and open rectangles
represent 180° pulses. The
delay Ais set to 1/(2J12).

phase diagonal peaks found in the simple experiment. The DQF COSY
experiment is the method of choice for tracing out coupling networks in a
molecule.

3.4.3 Heteronuclear correlation experiments

One particularly useful experiment is to record a two-dimensional spectrum
in which the co-ordinate of a peak in one dimension is the chemical shift of
one type of nucleus (e.g. proton) and the co-ordinate in the other dimension
is the chemical shift of another nucleus (e.g. carbon-13) which is coupled to
the first nucleus. Such spectra are often called shift correlation maps or shift
correlation spectra.

The one-bond coupling between a carbon-13 and the proton directly
attached to it is relatively constant (around 150 Hz), and much larger than
any of the long-range carbon-13 proton couplings. By utilizing this large
difference experiments can be devised which give maps of carbon-13 shifts
vs the shifts of directly attached protons. Such spectra are very useful as
aids to assignment; for example, if the proton spectrum has already been
assigned, simply recording a carbon-13 proton correlation experiment will
give the assignment of all the protonated carbons.

Only one kind of nuclear species can be observed at a time, so there is a
choice as to whether to observe carbon-13 or proton when recording a shift
correlation spectrum. For two reasons, it is very advantageous from the
sensitivity point of view to record protons. First, the proton magnetization
is larger than that of carbon-13 because there is a larger separation between
the spin energy levels giving, by the Boltzmann distribution, a greater
population difference. Second, a given magnetization induces a larger
voltage in the coil the higher the NMR frequency becomes.

Trying to record a carbon-13 proton shift correlation spectrum by proton
observation has one serious difficulty. Carbon-13 has a natural abundance
of only 1%, thus 99% of the molecules in the sample do not have any
carbon-13 in them and so will not give signals that can be used to correlate
carbon-13 and proton. The 1% of molecules with carbon-13 will give a
perfectly satisfactory spectrum, but the signals from these resonances will be
swamped by the much stronger signals from non-carbon-13 containing
molecules. However, these unwanted signals can be suppressed using
coherence selection in a way which will be described below and which will
be further elaborated in lecture 4.

3.4.3.1 Heteronuclear multiple-quantum correlation (HMQC)

The pulse sequence for this popular experiment is given opposite. The
sequence will be analysed for a coupled carbon-13 proton pair, where spin 1
will be the carbon-13 and spin 2 the proton.

The analysis will start with equilibrium magnetization on spih1, The
whole analysis can be greatly simplified by noting that the 180° pulse is
exactly midway between the first 90° pulse and the start of data acquisition.
As has been shown in section 2.4, such a sequence forms a spin echo and so
the evolution of the offset of spin 1 over the entire peripd+(24) is
refocused. Thus the evolution of the offset of spin 1 can simply be ignored
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for the purposes of the calculation.

At the end of the delay Ahe state of the system is simply due to
evolution of the termkyy, under the influence of the scalar coupling:

—cosrd,A 1y, +sinmd,A 21 1,

It will be assumed thdt = 1/(2);2), so only the anti-phase term is present.
The second 90° pulse is applied to carbon-13 (spin 2) only

21,1, Ot S =21, 1

1x " 2z Ix " 2y

This pulse generates a mixture of heteronuclear double- and zero-quantum
coherence, which then evolves duriig In principle this term evolves
under the influence of the offsets of spins 1 and 2 and the coupling between
them. However, it has already been noted that the offset of spin 1 is
refocused by the centrally placed 180° pulse, so it is not necessary to
consider evolution due to this term. In addition, it can be shown that
multiple-quantum coherence involving spins i and j does not evolve under
the influence of the couplinglj, between these two spins (see appendix
X.X). As a result of these two simplifications, the only evolution that needs
to be considered is that due to the offset of spin 2 (the carbon-13).

=21y, 0, OTF & —cosQ,t, 21,1, +sinQ,t, 21,1,

The second 90° pulse to spin 2 (carbon-13) regenerates the first term on the
right into spin 1 (proton) observable magnetization; the other remains
unobservable

—c0osQ,t, 21,1, O - —cosQ,t, 21,15,

This term then evolves under the coupling, again it is assumed that
A=1/(2)y)

—cosQ,t, 21,1, 0PI - —cos,t, 1y,

This is a very nice result; iR, there will be an in-phase doublet centred at = Ji=—
the offset of spin 1 (proton) and these two peaks will have, @o-ordinate

simply determined by the offset of spin 2 (carbon-13); the peaks will be in
absorption. A schematic spectrum is shown opposite. F
The problem of how to suppress the very strong signals from protons ot o {2
coupled to any carbon-13 nuclei now has to be addressed. From the point
view of these protons the carbon-13 pulses might as well not even be there, o R

and the pulse sequence looks like a simple spin echo. This insensitivitytatic Hmac spectrum for
the carbon-13 pulses is the key to suppressing the unwanted sigmalsupled spins.
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Suppose that the phase of the first carbon-13 90° pulse is altered foom

X. Working through the above calculation it is found that the wanted signal
from the protons coupled to carbon-13 changes sign i.e. the observed
spectrum will be inverted. In contrast the signal from a proton not coupled
to carbon-13 will be unaffected by this change. Thus, for gaokrement

the free induction decay is recorded twice: once with the first carbon-13 90°
pulse set to phaseand once with it set to phase —The two free induction
decays are then subtracted in the computer memory thus cancelling the
unwanted signals. This is an example of a very simple phase cycle, more
details of which are given in lecture 4.

In the case of carbon-13 and proton the one bond coupling is so much
larger than any of the long range couplings that a choife=o1/(2Jone bond)
does not give any correlations other than those through the one-bond
coupling. There is simply insufficient time for the long-range couplings to
become anti-phase. HoweverAfis set to a much longer value (30 to 60
ms), long-range correlations will be seen. Such spectra are very useful in
assigning the resonances due to quaternary carbon-13 atoms. The
experiment is often called HMBC (heteronuclear multiple-bond correlation).

Now that the analysis has been completed it can be seen what the
function of various elements in the pulse sequence is. The first pulse and
delay generate magnetization on proton which is anti-phase with respect to
the coupling to carbon-13. The carbon-13 90° pulse turns this into multiple
guantum coherence. This forms a filter through which magnetization not
bound to carbon-13 cannot pass and it is the basis of discrimination between
signals from protons bound and not bound to carbon-13. The second
carbon-13 pulse returns the multiple quantum coherence to observable anti-
phase magnetization on proton. Finally, the second delayns the anti-
phase state into an in-phase state. The centrally placed proton 180° pulse
refocuses the proton shift evolution for both the defagadt;.

3.4.3.2 Heteronuclear single-quantum correlation (HSQC)

This pulse sequence results in a spectrum identical to that found for HMQC.

Despite the pulse sequence being a little more complex than that for HMQC,

HSQC has certain advantages for recording the spectra of large molecules,
such a proteins. The HSQC pulse sequence is often embedded in much
more complex sequences which are used to record two- and three-

dimensional spectra of carbon-13 and nitrogen-15 labelled proteins.

NI>

A
2

NI>

y
W A 1ED
Bc— ! - ! | !

Foa 1 B
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The pulse sequence for HSQC. Filled rectangles represent 90° pulses and open rectangles represent
180° pulses. The delay A is set to 1/(2J12); all pulses have phase x unless otherwise indicated.

If this sequence were to be analysed by considering each delay and pulse in
turn the resulting calculation would be far too complex to be useful. A more
intelligent approach is needed where simplifications are used, for example
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by recognizing the presence of spin echoes who refocus offsets or couplings.
Also, it is often the case that attention can be focused a particular terms, as
these are the ones which will ultimately lead to observable signals. This kind
of "intelligent" analysis will be illustrated here.

PeriodsA andC are spin echoes in which 180° pulses are applied to both
spins; it therefore follows that the offsets of spins 1 and 2 will be refocused,
but the coupling between them will evolve throughout the entire period. As
the total delay in the spin echo is TW2 the result will be the complete
conversion of in-phase into anti-phase magnetization.

PeriodB is a spin echo in which a 180° pulse is applied only to spin 1.
Thus, the offset of spin 1 is refocused, as is the coupling between spins 1
and 2; only the offset of spin 2 affects the evolution.

With these simplifications the analysis is easy. The first pulse generates
—l1y ; during periodA this then becomes H>,. The 90°(y pulse to spin 1
turns this to P,lo, and the 90%) pulse to spin 2 turns it to 1. The
evolution during perio® is simply under the offset of spin 2

—2l,,1,, OB & —cosQ,t, 21,1, +snQ,t; 21,1,

The next two 90° pulses transfer the first term to spin 1; the second term is
rotated into multiple quantum and is not observed

~C0SQ,t, 21,1, +sinQ,t, 21,1, Ot
—cosQ,t, 21, 1,, —sinQ,t, 21, 1,

The first term on the right evolves during peridl into in-phase
magnetization (the evolution of offsets is refocused). So the final
observable term i®0sQ,t, 1,,. The resulting spectrum is therefore an in-

phase doublet i, centred at the offset of spin 1, and these peaks will both
have the same frequency i, namely the offset of spin 2. The spectrum
looks just like the HMQC spectrum.

3.5 Multiple-quantum spectroscopy

A key feature of two-dimensional NMR experiments is that no direct
observations are made duriigit is thus possible to detect, indirectly, the
evolution of unobservable coherences. An example of the use of this feature
is in the indirect detection of multiple-quantum spectra. A typical pulse
sequence for such an experiment is shown opposite

For a two-spin system the optimum value fois 1/(2);;). The sequence 212 t t
can be dissected as follows. The initial 9@%/2 — 180° -A/2 — sequence is
a spin echo which, at timk, refocuses any evolution of offsets but allowsse sequence for multiple-
the coupling to evolve and generate anti-phase magnetization. This awatium spectroscopy.
phase magnetization is turned into multiple-quantum coherence by the
second 90° pulse. After evolving for tinig the multiple quantum is
returned into observable (anti-phase) magnetization by the final 90° pulse.
Thus the first three pulses form the preparation period and the last pulse is
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the mixing period.

3.5.1 Double-quantum spectrum for athree-spin system

The sequence will be analysed for a system of three spins. A complete
analysis would be rather lengthy, so attention will be focused on certain
terms as above, as many simplifying assumptions as possible will be made
about the sequence.

The starting point will be equilibrium magnetization on spit;1,after
the spin echo the magnetization has evolved due to the coupling between
spin 1 and spin 2, and the coupling between spin 1 and spin 3 (the 180°
pulse causes an overall sign change (see section 2.4.1) but this has no real
effect here so it will be ignored)

— 1, OFEHY . —cosd,A 1, + Sn7dL,A 211,
0P8 F - —cosm ;A cosd,A 1y, +sin/d A cosd,A 21,1, [3.1]
+COSTLA SIVDLA 21,1, +sin/dpA sindyA 4l |

22" 3z

Of these four terms, all but the first are turned into multiple-quantum by the
second 90° pulse. For example, the second term becomes a mixture of
double and zero quantum between spins 1 and 3

Sn7d,A cosrdy,A 21, 1, OFE T - —snm A cosm A 21, |

Ix " 3y

It will be assumed that appropriate coherence pathway selection (see section
x.X) has been used so that ultimately only the double-quantum part
contributes to the spectrum. This part is

[~ sinm,,8 cosm,a [2(21,15, +21,,1,,)} = B,0Q)

1ly " 3x

The term in square brackets just gives the overall intensity, but does not
affect the frequencies of the peaks in the two-dimensional spectrum as it
does not depend dn or ty; this intensity term is denoteh; for brevity.

The operators in the curly brackets represent a pure double quantum state

which can be denoteﬂ)Q(f‘); the superscript (13) indicates that the double
guantum is between spins 1 and 3 (see section 2.9).

As is shown in section 2.9, such a double-quantum term evolves under
the offset according to

B,DQ\Y [ P Patta ity
B,,codQ, + Q. )t, DQ™ - B sin(Q, +Q,)t, DQY
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where DQ!™ = %(ZIHI3X _2|ly|3y)' This evolution is analogous to that of
a single spin whenrgrotates towardsx-

As is also shown in section 2.91Q(yl3’) and DQ™ do not evolve under

the coupling between spins 1 and 3, but they do evolve under the sum of the
couplings between these two and all other spins; in this case this is simply
(J12+J23). Taking each term in turn

B,,codQ, +Q, )t, DQU O PPT ety rtw

B,,cod Q, + Q. )t, cosr(J,, + J4)t, DQI

= Bcod Q, + Q,)t, sinrfJ,, + Iy, )t, 21,,DQ™
- B, sn(Q, +Q,)t, DQ O PP t3 1yt

- B, sin(Q, + Q,)t, cosr(J,, + I, )t, DQY

— B, sin(Q, + Q,)t, sinm(J,, + 3,4)t, 21,,DQ

Terms such a2l,,DQ! and 21,,DQ{? can be thought of as double-

guantum coherence which has become "anti-phase"” with respect to the
coupling to spin 2; such terms are directly analogous to single-quantum anti-
phase magnetization.

Of all the terms present at the end tgf only DQ(yB) is rendered —L'-H—“"—

observable by the final pulse J
_1 ceiee T as 2125
N F,
codQ, +Q,)t, cosr( 3y, + 3,,)t,B,,DQI 0 Fl'trTr 0 o :
COS(Ql * Q3)tl COSTI(JlZ * J23)tlBl3[2| ila: +215] 3X] Schematic  two-dimensional

double quantum  spectrum
showing the multiplets arising

The calculation predicts that two two-dimensional multiplets appear in ftpre evolution of - double-
. . quantum coherence between

spectrum. Both have the same structurEijmamely an in—phase doubletgspins 1 and 3. If has been

split by (12 + Js3) and centred at@; + (2); this is analogous to a normapssumedthat Jiz > Jiz > Jzs.

multiplet. InF, one two-dimensional multiplet is centred at the offset of

spins 1,04, and one at the offset of spin &;; both multiplets are anti-

phase with respect to the couplidg. Finally, the overall amplitudd3s,

depends on the deldyand all the couplings in the system. The schematic

spectrum is shown opposite. Similar multiplet structures are seen for the

double-quantum between spins 1 & 2 and spins 2 & 3.
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frequencies for coupled spins.

3.5.2 Interpretation of double-quantum spectra

The double-quantum spectrum shows the relationship between the
frequencies of the lines in the double quantum spectrum and those in the
(conventional) single-quantum spectrum. If two two-dimensional multiplets
appear atKi, F) = (Qa + O, Q4) and @ + O, Op) the implication is

that the two spins A and B are coupled, as it is only if there is a coupling
present that double-quantum coherence between the two spins can be
generated (e.g. in the previous sectiod;if= 0 the ternB;3, goes to zero).

The fact that the two two-dimensional multiplets share a comfon
frequency and that this frequency is the sum of the FBgdrequencies
constitute a double check as to whether or not the peaks indicate that the
spins are coupled.

Double quantum spectra give very similar information to that obtained
from COSY i.e. the identification of coupled spins. Each method has
particular advantages and disadvantages:

(1) In COSY the cross-peak multiplet is anti-phase in both dimensions,
whereas in a double-quantum spectrum the multiplet is only anti-phase in
F,. This may lead to stronger peaks in the double-quantum spectrum due to
less cancellation. However, during the two delaysagnetization is lost by
relaxation, resulting in reduced peak intensities in the double-quantum
spectrum.

(2) The value of the delay in the double-quantum experiment affects the
amount of multiple-quantum generated and hence the intensity in the
spectrum. All of the couplings present in the spin system affect the intensity
and as couplings cover a wide range, no single optimum valdedan be
given. An unfortunate choice férwill result in low intensity, and it is then
possible that correlations will be missed. No such problems occur with
COSY.

(3) There are no diagonal-peak multiplets in a double-quantum spectrum, so
that correlations between spins with similar offsets are relatively easy to
locate. In contrast, in a COSY the cross-peaks from such a pair of spins
could be obscured by the diagonal.

(4) In more complex spin systems the interpretation of a COSY remains
unambiguous, but the double-quantum spectrum may show a peak;with
co-ordinate Qa + ) andF; co-ordinate@Q, (or g) even when spins A

and B are not coupled. Such remote peaks, as they are called, appear when
spins A and B are both coupled to a third spin. There are various tests that
can differentiate these remote from the more useful direct peaks, but these
require additional experiments. The form of these remote peaks in
considered in the next section.

On the whole, COSY is regarded as a more reliable and simple
experiment, although double-quantum spectroscopy is used in some special
circumstances.

3.5.3 Remote peaksin double-quantum spectra

The origin of remote peaks can be illustrated by returning to the calculation
of section 3.5.1. and focusing on the doubly anti-phase term which is present
at the end of the spin echo (the fourth term in Egn. [3.1])
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Sn7d,A sin7d,A 4l 1,
The 90° pulse rotates this into multiple-quantum

SN7D,A SnLA 4l 1,1, O TR L sina snm,a an |

2y "3y

The pure double-quantum part of this term is
—1lg i _ = (23)
LSin7D,,A SN7DLA (81,1, 5 —4,1,15 ) = By, 21,DQ

In words, what has been generated in double-quantum between spins 2 and
3, anti-phase with respect to spin 1. The key thing is that no coupling
between spins 2 and 3 is required for the generation of this term — the
intensity just depends ah, andJis; all that is required is that both spins 2

and 3 have a coupling to the third spin, spin 1.

During t; this term evolves under the influence of the offsets and the
couplings. Only two terms ultimately lead to observable signals; at the end
of t; these two terms are

B COS(Q2 + Q3)tl COSH(J12 + Jla)tl 21, DQ£23)
Bas1 COS(QZ + Qg)tl Sinn(le + Jl3)t1 DQ(yZ3)

and after the final 90° pulse the observable parts are

J13

B, €09Q, +£)3)tl cosn(J12 + JlB)tl4|ly|22|32 ‘ ‘ ‘ ‘
- H QS H
BZS,l C0492 + Q3)t1 Sln77(‘]12 + Jl3)tl (2| 2x I 3z + 2| Zzl 3x) .
' Jo3

The first term results in a multiplet appearingtin F, and at {2, + ;) in decraasing
Fi. The multiplet is doubly anti-phase (with respect to the couplings_ta l' A‘ \

spins 2 and 3) irF; in Fy it is in-phase with respect to the sum of the
couplingsJ;» and Jia.  This multiplet is a remote peak, as its frequency | :
coordinates do not conform to the simple pattern described in section 3527 J»=0

It is distinguished from direct peaks not only by its frequency coordinates, 2hzhsx

but also by having a different lineshapeFnto direct peaks and by beingystation of how the intensity

doubly anti-phase in that dimension. of an anti-phase multiplet
decreases as the coupling

The second and third terms are anti-phase with respect to the couptiagit is in anti-phase with

i i i i i ; I Ct to decreases. The in-

bgtvyeen splns_2 and 3, andllf this cqupllng is zero there; WI|| be c.ancella;@ multiplet is shown at the

within the multiplet and no signals will be observed. This is despite the fact and below are three

that multiple-quantum coherence between these two spins has BERIE ™ cuoteen
generated. decreasing values of Jo3.
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3.6 Lineshapes and frequency discrimination

This is a somewhat involved topic which will only be possible to cover in
outline in this lecture.

3.6.1 One-dimensional spectra

Al modern spectrometers use ~ SUpPPoOse that a 9@)(pulse is applied to equilibrium magnetization resulting

2 method know as dquadrdlre in the generation of pure-magnetization which then precesses in the
etection, which in effect means

that both the x- and y- transverse plane with frequen& NMR spectrometers are set up to detect

e otonton are detectoq  thex- andy-components of this magnetization. If it is assumed (arbitrarily)

simultaneously. that these components decay exponentially with time conStanhe
resulting signalsS(t) andS(t), from the two channels of the detector can be
written

S (t) = ycosQtexp(-t/T,) S, (t) = ysinQtexp(-/T,)

whereyis a factor which gives the absolute intensity of the signal.

Usually, these two components are combined in the computer to give a
complex time-domain signait)

S(t) = S,(t) +is,(t)

= y(cosQt +isinQt) exp(-t/T,) [3.2]
T
L «a = yexp(iQt) exp(-t/T,)
The Fourier transform &(t) is also a complex functio® «):
<L
Sw) = FT[S(t)]
= y{ Alw) +iD(w)}
Absorpt_ion (above) a}nd
enanes, e et where A(«) and D(«) are the absorption and dispersion Lorentzian
frequency Q. Imeshapes:
1 (w - Q)Tz
Alw) = D(w) =

(w-Q)°T?+1 (w-0Q)°T2 +1
2 2

These lineshapes are illustrated opposite. For NMR it is usual to display the
spectrum with the absorption mode lineshape and in this case this

corresponds to displaying the real parg@b.

3.6.1.1 Phase

Due to instrumental factors it is almost never the case that the real and
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imaginary parts o§(t) correspond exactly to the andy-components of the
magnetization. Mathematically, this is expressed by multiplying the ideal

function by an instrumental phase facty;

S(t) = yexpli g, ) explior) exp(~ t/T,)

The real and imaginary parts §f) are

R S(t)] = y{cosg,, cosQt —sing,, sinQt)exp(-1/T,)
Im S(t)] = y(cosqz(nstr sinQt +sing,,, coth)exp(—t/Tz)

Clearly, these do not correspond to theand ycomponents of the ideal
time-domain function.

The Fourier transform &t) carries forward the phase term

S(w) = yexpli e, { Alw) +iD()}

The real and imaginary parts &« are no longer the absorption and
dispersion signals:

R S(w)] = y(cosqz(nstr Alw) -sing,, D( a)))
IM{S(cw)] = {cos @, D(e) + Singhe, Alcr)

Thus, displaying the real part 8{c) will not give the required absorption
mode spectrum; rather, the spectrum will show lines which have a mixture
of absorption and dispersion lineshapes.

Restoring the pure absorption lineshape is sinffle) is multiplied, in
the computer, by a phase correction faqgyf,

) expli @) = v expli i ) XPli @ { Al) +iD(w)}
=y xXp(i(Rar + Gsr ) { Al) +iD()}

By choosing@or such that @or + @hg) = 0 (.. @or = — @nar) the phase
terms disappear and the real part of the spectrum will have the required
absorption lineshape. In practice, the value of the phase correction is set "by
eye" until the spectrum "looks phased”. NMR processing software also
allows for an additional phase correction which depends on frequency; such
a correction is needed to compensate for, amongst other things,
imperfections in radiofrequency pulses.
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3.6.1.2 Phaseisarbitrary

Suppose that the phase of the 90° pulse is changed yfrtanx The
magnetization now starts along and precesses towargsassuming that

the instrumental phase is zero, the output of the two channels of the detector
are

S.(t) = ysinQtexp(-t/T,) S,(t) = -y cosQtexp(-t/T,)

y

The complex time-domain signal can then be written

)= 5,0 +is, (1
= y(sinQt —i cosQt) exp(- t/T,)
y(~i)(cosQt +isinQt) exp(-t/T,)
= y(~i) explicat) exp(- t/T,)
= yexp(i (pexp)exp(iQt)exp(—t/Tz)

Where @, the "experimental" phase, is 2 (recall that
exp(ig = cogp+ i sing so that exp(—72) = —i).

It is clear from the form o§(t) that this phase introduced by altering the
experiment (in this case, by altering the phase of the pulse) takes exactly the
same form as the instrumental phase error. It can, therefore, be corrected by
applying a phase correction so as to return the real part of the spectrum to
the absorption mode lineshape. In this case the phase correction would be
2.

The Fourier transform of the original signal is

Sw) = y(-if Alw) +iD(w)}
R{S(w)]=yD(w)  IMSw)]=-yAw)

Thus the real part shows the dispersion mode lineshape, and the imaginary
part shows the absorption lineshape. The 90° phase shift simply swaps over
the real and imaginary parts.

3.6.1.3 Relative phaseisimportant

The conclusion from the previous two sections is that the lineshape seen in
the spectrum is under the control of the spectroscopist. It does not matter,
for example, whether the pulse sequence results in magnetization appearing
along thex- or y axis (or anywhere in between, for that matter). It is always
possible to phase correct the spectrum afterwards to achieve the desired
lineshape.

However, if an experiment leads to magnetization from different
processes or spins appearing along different axes, there is no single phase
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correction which will put the whole spectrum in the absorption mode. This
is the case in the COSY spectrum (section 3.4.1). The terms leading to
diagonal-peaks appear along tkexis, whereas those leading to cross-
peaks appear along Either can be phased to absorption, but if one is in
absorption, one will be in dispersion; the two signals are fundamentally 90°
out of phase with one another.

3.6.1.4 Frequency discrimination

Suppose that a particular spectrometer is only capable of recording one, say
thex-, component of the precessing magnetization. The time domain signal
will then just have a real part (compare Egn. [3.2] in section 3.6.1)

S(t) = ycosQt exp(— t/Tz)

Using the identitycosé = £ (expl(i 6) + exp(~i6)) this can be written

S(t) = %y[exp(iQt) +exp(— iQt)] ex;:(— t/TZ)
=1yexpiQt) exrﬁ—t/Tz) +1y exp 4Qt) e>(p— t/Tz)

The Fourier transform of the first term gives, in the real part, an absorption a ‘ I J || L
mode peak at w= +2; the transform of the second term gives the same but o + 0 -

a w=-0.
PLak bl
. o+ 0 -
Re[S(w)] =3)A, +3)A .
w + 0 -

where A, represents an absorption mode Lorentzian line at w= +Q and A_
represents the same at w = —Q, Iikewise, D. and D_ represent dispersion Spectrum a has peaks at
mode peaks at +Q and 2, respectively. positive and negative

. . . . L. . . frequencies and is frequency
This spectrum is said to lack frequency discrimination, in the sense thactininated. ~ Spectrum b

does not matter if the magnetization went round@tof 2, the spectrum oy fom  a . cosine

still shows peaks at both@-and 2. This is in contrast to the case wherget each peak appears at both

itive and negative
both the x andy-components are measured where one peak appears at eﬁ%ﬁmﬁcy, regarmessg of
positive or negativevdepending on the sign &. whether fts real —offset is

positive or negative. Spectrum

The lack of frequency discrimination is associated with the signal be@gﬁgugztf_mﬂl‘(: St‘)”eeg‘cohdu';‘égﬁ

modulated by a cosine wave, which has the property thaQos{ cos(— appears twice, but with the
<), as opposed to a complex exponential, ep(Which is sensitive to the 9ok ks rvared. Shectrab and
sign of Q. In one-dimensional spectroscopy it is virtually always possibIeﬁ;Et{!)Cakr erﬂii‘ee’:,‘;ym?e‘f‘::;?;’;f‘gigg
arrange for the signal to have this desirable complex phase modulationg Eujtt_q P

in the case of two-dimensional spectra it is almost always the case that the

signal modulation in thé& dimension is of the form ca&;) and so such

spectra are not naturally frequency discriminated ifrtfltBmension.

Suppose now that only thecomponent of the precessing magnetization
could be detected. The time domain signal will then be (compare Eqgn. [3.2]
in section 3.6.1)
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S(t) =iysinQt exp(— t/Tz)

Using the identitysind = z—ﬁ(exp(i 6) —exp(-i H)) this can be written

S(t) = %y[exp(iQt) —exp(- iQt)] exd— t/Tz)
= 1yexdiQt) exg-t/T,) -1y exp 4Qt) exp-t/T,)

and so

ReS(w)] =3)A, -3 A

This spectrum again shows two peaks, &, but the two peaks have
opposite signs; this is associated with the signal being modulated by a sine
wave, which has the property that si@)- = — sin@t). If the sign ofQ
changes the two peaks swap over, but there are still two peaks. In a sense
the spectrum is frequency discriminated, as positive and negative
frequencies can be distinguished, but in practice in a spectrum with many
lines with a range of positive and negative offsets the resulting set of
possibly cancelling peaks would be impossible to sort out satisfactorily.

3.6.2 Two-dimensional spectra

3.6.2.1 Phase and amplitude modulation

There are two basic types of time-domain signal that are found in two-
dimensional experiments. The first is phase modulation, in which the
evolution int; is encoded as a phases. mathematically as a complex
exponential

S(tl,tg)ph@ = yexp(igltl) exp(— tl/Tz(l) ) eXp(intz) exp(— t /Tz(Z) )

where Q; and 2, are the modulation frequenciestinandt, respectively,
and T," and T, are the decay time constants;iandt, respectively.

The second type is amplitude modulation, in which the evolutidnis
encoded as an amplitudes. mathematically as sine or cosine

S(t), = yoodQ,t,)exp(-t, /T,” ) exp(i,t, ) exp(~ t, /T,
S(t), = ysin(@,t,)exp(-1,/T,” ) exp(i,t, ) exp(~ t, /T,
Generally, two-dimensional experiments produce amplitude modulation,

indeed all of the experiments analysed in this chapter have produced either
sine or cosine modulated data. Therefore most two-dimensional spectra are
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fundamentally not frequency discriminated in the¢ dimension. As
explained above for one-dimensional spectra, the resulting confusion in the
spectrum is not acceptable and steps have to be taken to introduce frequency
discrimination.

It will turn out that the key to obtaining frequency discrimination is the
ability to record, in separate experiments, both sine and cosine modulated
data sets. This can be achieved by simply altering the phase of the pulses in
the sequence.

For example, consider the EXSY sequence analysed in section 3.2 . The
observable signal, at timig= 0, can be written

(1— f)cosQltl I, + fcosQyt, I,,

If, however, the first pulse in the sequence is changed in phase fitom
the corresponding signal will be

~(1-f)snQyt, 1, - fsinQt, 1,

i.e. the modulation has changed from the form of a cosine to sine. In COSY
and DQF COSY a similar change can be brought about by altering the phase
of the first 90° pulse. In fact there is a general procedure for effecting this
change, the details of which are given in lecture 4.

3.6.2.2 Two-dimensional lineshapes

The spectra resulting from two-dimensional Fourier transformation of phase
and amplitude modulated data sets can be determined by using the following
Fourier pair

FT[exp(iQt) exp(- t/Tz)] = { Alw) +iD(w)}

whereA andD are the dispersion Lorentzian lineshapes described in section
3.6.1

Phase modulation

For the phase modulated data set the transform with respggives

sft@) .. = velion)ep(-t,/T0| A2 +iD?)]

where A2 indicates an absorption mode line in the dimension at

@ =+@2 and with linewidth set byT,?: similarly D? is the
corresponding dispersion line.
The second transform with respectitgives
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o) =12 0P A 0]

where A" indicates an absorption mode line in the dimension at

@ = +; and with linewidth set by, ; similarly DY is the corresponding
dispersion line.
The real part of the resulting two-dimensional spectrum is

R%S(a)l'wz)phase] = y(AEl) AEZ) _ DJ(,l) DEZ))

This is a single line atef,ap) = (+21,+€2,) with the phase-twist lineshape,
illustrated below.

Pseudo 3D view and contour plot of the phase-twist lineshape.

The phase-twist lineshape is an inextricable mixture of absorption and

dispersion; it is a superposition of the double absorption and double

dispersion lineshape (illustrated in section 3.4.1). No phase correction will

restore it to pure absorption mode. Generally the phase twist is not a very
desirable lineshape as it has both positive and negative parts, and the
dispersion component only dies off slowly.

Cosine amplitude modulation

For the cosine modulated data set the transform with respecfives

S(tl'w?)c = ycos(Qltl)exp(— tl/Tz(l))[ AP "‘iDEZ)]

The cosine is then rewritten in terms of complex exponentials to give

St.w), =1 y{explian,) + exp(-i.t, )| exp(-t,/T,2)] A? +iD?

The second transform with respecttgives
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S(a).l.’wz)c =%V[{ AJ(rl) +iDJ(rl)} +{AE1) +iD£l)}][A£2) +iD£2)

where AY indicates an absorption mode line in fhedimension aty = —
@ and with linewidth set byT™; similarly D™ is the corresponding
dispersion line.

Thereal part of the resulting two-dimensional spectrum is

Re[ Sw,w,) ] =1y(AP A - DYDP) +1y(AY AP - DWD?)

This is a two lines, both with the phase-twist lineshape; one is located at
(+02,,+,) and the other is at (1,+(,). As expected for a data set which
is cosine modulated ia the spectrum is symmetrical abaut= 0.

A spectrum with a pure absorption mode lineshape can be obtained by
discarding the imaginary part of the time domain data immediately after the

transform with respect tip; i.e. taking the real part os(tl,a)z)c
S(t) = RSty ) |
= ycoigltl) eXp(_ tl/Tz(l))Aiz)

Following through the same procedure as above:

gt,, a)z)fe = %y[exp(intl) +exp(- intl)] exp(— tl/Tz(l))Aiz)

The real part of the resulting two-dimensional spectrum is

Re[s(wl, wz)fe] =AY A + A AP

This is two lines, located at (,+(2,) and (+2,,+(2,), but in contrast to the
above both have the double absorption lineshape. There is still lack of
frequency discrimination, but the undesirable phase-twist lineshape has been
avoided.

Sine amplitude modulation

For the sine modulated data set the transform with respeait@s
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S(tl,a)z)S = ysin(Qltl)exp(— tl/TZ(l))[ A? +iD£2)]

The cosine is then rewritten in terms of complex exponentials to give

S(tl""z)s = Z—ﬁy[exp(intl) - exp(— intl)] exp(— t,/ T, )[ A? +iD{

The second transform with respectitgives

Say @), =2—1iy[{ A +iD} -{ A +inl)}][A£2) +iD?|

The imaginary part of the resulting two-dimensional spectrum is

'm[S(wl ) ] =-1y(AYA? - D¥D?) +1y(AY A? - DY D?)

This is two lines, both with the phase-twist lineshape but with opposite
signs; one is located at @r,+(,) and the other is at (,+(,). As
expected for a data set which is sine modulatetd the spectrum is anti-
symmetric abouiy = 0.

As before, a spectrum with a pure absorption mode lineshape can be
obtained by discarding the imaginary part of the time domain data
immediately after the transform with respecttd.e. taking the real part of

S(tl'a’z)s
Sty ). = Re{S(tl,a)z)s]

= ysin(Qltl)exp(— tl/Tz(l))Aﬁz)

Following through the same procedure as above:

gt,, a)z)SRe = Z—ﬁy[exp(intl) —exp(- intl)] exp(— t,/T" )Aﬁz)

ea.)” = [ A7 D0} ~{ A +iD0)| A"

The imaginary part of the resulting two-dimensional spectrum is

M S{a. )] = -1 A9+ 1)a% A

The two lines now have the pure absorption lineshape.
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3.6.2.3 Frequency discrimination with retention of absorption lineshapes

It is essential to be able to combine frequency discrimination inFthe
dimension with retention of pure absorption lineshapes. Three different Ql 0 +Ql+
ways of achieving this are commonly used; each will be analysed here. T sine

States-Haberkorn-Ruben method

. -0 fe
The essence of the States-Haberkorn-Ruben (SHR) method is the ' o

observation that the cosine modulated data set, processed as described in difference |

section 3.6.2.2, gives two positive absorption mode peakeAaiH®,) and 5
(—=1,+,), whereas the sine modulated data set processed in the same way: | '
gives a spectrum in which one peak is negative and one positive. ‘0,

Subtracting these spectra from one another gives the required absorption
i imi i . lllustration of the way in which
mode frequency discriminated spectrum (see the diagram below): hostraion Of the way In whieh
frequency discrimination by
combining cosine and sine

modulated spectra.
Resa, @) 5 'm[S(wlwz l
:[EJA +HAD AP - [- HAY AD + 1A AT
:yA(l)A(Z

In practice it is usually more convenient to achieve this result in the
following way, which is mathematically identical.

The cosine and sine data sets are transformed with respedrd the
real parts of each are taken. Then a new complex data set is formed using
the cosine data for the real part and the sine data for the imaginary part:

S(tl""z)SH = S(tl'wz)zee "'is(tl""z)Re
—ycos(Q t )exp( t,/T" ) +|ysm(Q t )exp( t,/T" )
= yexp(intl)exp(—tl/T21 )A+2

Fourier transformation with respect taives a spectrum whose real part
contains the required frequency discriminated absorption mode spectrum

S.2) = A2 4102
- yA(l) A(Z) +iD(l) A(Z)

Marion-Wi(ithrich or TPPI method
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The idea behind the TPPI (time proportional phase incrementation) or
Marion—-Wiuthrich (MW) method is to arrange things so that all of the peaks
have positive offsets. Then, frequency discrimination would not be required
as there would be no ambiguity.

One simple way to make all offsets positive is to set the receiver carrier
frequency deliberately at the edge of the spectrum. Simple though this is, it
IS not really a very practical method as the resulting spectrum would be very
inefficient in its use of data space and in addition off-resonance effects
associated with the pulses in the sequence will be accentuated.

In the TPPI method the carrier can still be set in the middle of the
spectrum, but it is made to appear that all the frequencies are positive by
phase shifting systematically some of the pulses in the sequence in concert
with the incrementation df.

In section 3.2 it was shown that in the EXSY sequence the cosine
modulation int;, cos(t;), could be turned into sine modulation, —
sin((ity), by shifting the phase of the first pulse by 90°. The effect of such a
phase shift can be represented mathematically in the following way.

Recall thatQ is in units of radians™§ and so if t is in seconds (2t isin
radians; €t can therefore be described as a phase which depends on time. It
is also possible to consider phases which do not depend on time, as was the
case for the phase errors considered in section 3.6.1.1

The change from cosine to sine modulation in the EXSY experiment can
be though of as a phase shift of the signal in t;. Mathematically, such a
phase shifted cosine wave is written as cos(2it; + ¢, where @is the phase
shift in radians. This expression can be expanded using the well known
formula co A+ B) = cosAcosB —sin AsinB to give

cos(Qltl + (0) = cosQ,tcosp—sinQ,tsing
If the phase shift, ¢ isTV2 radiansthe result is

cos(Qltl + 71/2) = cosQ,tcosr/2 -sinQ,tsinm/2
=-snQ,t

In words, a cosine wave, phase shifted by 172 radians (90°) is the same thing

as a sine wave. Thus, in the EXSY experiment the effect of changing the
phase of the first pulse by 90° can be described as a phase shift of the signal
by 90°.

Suppose that instead of a fixed phase shift, the phase shift is made
proportional tot;; what this means is that each timas incremented the
phase is also incremented in concert. The constant of proportion between
the time dependent phag#t;), andt; will be written citiona

q(tl) = Wggitional 11
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Clearly the units otgditiona are radians$, that is cdditional IS a frequency.
The new time-domain function with the inclusion of this incrementing phase
isthus

Cos(Qltl + dtl)) = COS(Qltl * Wagitiona tl)

= C05(91 * Wditiona )tl

In words, the effect of incrementing the phase in concert with t; isto add a
frequency @qditiona t0 @l of the offsets in the spectrum. The TPPI method
utilizes this option of shifting all the frequenciesin the following way.

In one-dimensional pulse-Fourier transform NMR the free induction
signal is sampled at regular intervals A. After transformation the resulting

spectrum displays correctly peaks with offsets in the range —(SW/2) to

+(SW/2) where SW is the spectral width which is given ly (1iis comes

about from the Nyquist theorem of data sampling). Frequencies outside this

range are not represented correctly.
Suppose that the required frequency range irFthdimension is from —

(SW1/2) to +(SW/2) (in COSY and EXSY this will be the same as the
range inF;). To make it appear that all the peaks have a positive offset, it
will be necessary to add (SYX) to all the frequencies. Then the peaks will

be in the range 0 to (S\WV

As the maximum frequency is now (QWrather than (SW2) the
sampling intervalf;, will have to be halvede. A; = 1/(2SW) in order that
the range of frequencies present are represented properly.

The phase increment égqgitionat1, bUtty can be written asA; for thenth
increment ot;. The required value fatyggitiona IS 2SW4/2) , where the 2
is to convert from frequency (the units of $Wo rad §', the units of
Ghdditionar PUtting all of this together aaqditionaf1 Can be expressed, for the nth

increment as
— 1
wadditionaltl - 232@ 2 gnAl)
e LIS
B 2 29w, 0
T

:nE

The way in which the phase incrementation increases the frequency of the
cosine wave is shown below:
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Illustration of the TPPI method.
The normal spectrum is shown
in a, with peaks in the range —
SW/2 to +SW/2. Adding a
frequency of SW/2 to all the
peaks gives them all positive
offsets, but some, shown
dotted) will then fall outside the
spectral window — spectrum b.
If the spectral width is doubled
all peaks are represented
correctly — spectrum c.
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The open circles lie on a cosine wave, cos(2 x n4), where 4 is the sampling interval and nruns 0, 1, 2

.. The closed circles lie on a cosine wave in which an additional phase is incremented on each point
i.e. the function is cos(2 x n4 + n ¢); here ¢= 778. The way in which this phase increment increases the
frequency of the cosine wave is apparent.

t]_:O

h=A In words this means that each titaés incremented, the phase of the signal

should also be incremented by 90°, for example by incrementing the phase
h=20— of one of the pulses. The way in which it can be decided which pulse to
3 increment will be described in lecture 4.

X A data set from an experiment to which TPPI has been applied is simply
b 3 amplitude modulated ith and so can be processed according to the method
described for cosine modulated data so as to obtain absorption mode
, _ lineshapes. As the spectrum is symmetrical abgut O it is usual to use a
TPPI phase incrementation . . . .
applied to a cosy sequence. Modified Fourier transform routine which saves effort and space by only

The phase of the first pulse is i iti
remtnted by 80° sech fme calculating the positive frequency part of the spectrum.

t1 is incremented.

t1:3A

\< 1
b3
<
x
S St St St

ﬁ:4A

Echo anti-echo method

Few two-dimensional experiments naturally produce phase modulated data
sets, but if gradient pulses are used for coherence pathway selection (see
lecture 4) it is then quite often found that the data are phase modulated. In
one way this is an advantage, as it means that no special steps are required to
obtain frequency discrimination. However, phase modulated data sets give
rise to spectra with phase-twist lineshapes, which are very undesirable. So,
it is usual to attempt to use some method to eliminate the phase-twist
lineshape, while at the same time retaining frequency discrimination.

The key to how this can be done lies in the fact that two kinds of phase
modulated data sets can usually be recorded. The first is callBetytpe or
anti-echo spectrum

t,t,), = yexp(ia.t,)exp(-t, /T ) exp(iQ,t, ) exp-t, /T?)

the 'P" indicates positive, meaning here that the sign of the frequencies in
F, andF; are the same.

The second data set is called the echg-type
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St,.t,), = yexp(—intl)exF(—tl/Tz(l)) exfiQ,t, ) exértz/Tz(z))

the "N" indicates negative, meaning here that the sign of the frequencies in
F, and F, are opposite. As will be explained in lecture 4 in gradient
experimentsit is easy to arrange to record either the P- or N-type spectrum.

The simplest was to proceed is to compute two new data sets which are

%[S(tl’tZ)p + S(tl’tz)N] =
%y[exp(intl) +exp(- intl)] exp(-t,/ T, ) exp(iQ,t, ) exp(-t,/T,?)
= ycos(Qltl)exp(—tl/Tz(l))exp(intz)exp(—tz/Tz‘z’)

z—ﬁ[S(tl,tz)P - S(tl’tz)N] =
1 y[exp(intl) -~ exp(— intl)] exp(— t, /T, ) exp(intz) exp(— t, /Tz(z))
= ysin(Qltl) exp(— t,/T,% ) exp(intz) exp(— t, /TZ(Z))

These two combinations are just the cosine and sine modulated data sets
that are the inputs needed for the SHR method. The pure absorption
spectrum can therefore be calculated in the same way starting with these
combinations.

3.6.2.4 Phasein two-dimensional spectra

In practice there will be instrumental and other phase shifts, possibly in both
dimensions, which mean that the time-domain functions are not the
idealised ones treated above. For example, the cosine modulated data set
might be

stt), = yeod@t, + @) expl -1,/ T¢)eplia.t, +ig)exp(-1,/T¢)

where @ and @ are the phase errors in F; and F3, respectively. Processing
this data set in the manner described above will not give a pure absorption
spectrum. However, it is possible to recover the pure absorption spectrum
by software manipulations of the spectrum, just as was described for the
case of one-dimensional spectra. Usually, NMR data processing software
provides options for making such phase corrections to two-dimensional data
sets.
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4 Coherence Selection: Phase Cycling and
Gradient Pulses

4.1 Introduction

A multiple-pulse NMR experiment is designed to manipulate the spinsin
a certain carefully defined way so as to produce a particular spectrum.
However, a given pulse sequence usualy can affect the spins in severd
different ways and as a result the final spectrum may contain resonances
other than those intended when the experiment was designed. The presence
of such resonances may result in extra crowding in the spectrum, they may
obscure the wanted peaks and they may aso lead to ambiguities of
interpretation. It isthusall but essential to ensure that the responses seen in
the spectrum are just those we intended to generate when the pulse sequence
was designed.

There are two principle ways in which this selection of required signalsis
achieved in practice. Thefirst is the procedure known as phase cycling. In
this the multiple-pulse experiment is repeated a number of times and for
each repetition the phases of the radiofrequency pulses are varied through a
carefully designed sequence. The free induction decays resulting from each
repetition are then combined in such a way that the desired signals add up
and the undesired signals cancel. The second procedure employs field
gradient pulses. Such pulses are short periods during which the magnetic
field is made deliberately inhomogeneous. During a gradient pulse,
therefore, any coherences present dephase are apparently lost. However, the
application of a subsequent pulsed field gradient can undo this dephasing
and cause some of the coherences to refocus. By a careful choice of the
gradient pulses within a pulse sequence it is possible to ensure that only the
coherences giving rise to the wanted signals are refocused.

Historically, in the development of multiple-pulse NMR, phase cycling
has been the principle method used for selecting the desired outcome.
Pulsed field gradients, although their utility had been known from the
earliest days of NMR, have only relatively recently been seen as a practical
dternative. Both methods can be described using the key concept of
coherence order and by utilising the idea of a coherence transfer pathway.
In this lecture we will start out by describing phase cycling, emphasising
first its relation to the idea of difference spectroscopy and then moving on to
describe the formal methods for writing and analysing phase cycles. The
tools needed to describe selection with gradient pulses are quite similar to
those used in phase cycling, and this will enable us to make rapid progress
through this topic. There are, however, some key differences between the
two methods, especially in regard to the sensitivity and other aspects of
multi-dimensional NMR experiments.

4.2 Phase Cycling

4.2.1 Phase

In the simple vector picture of NMR the phase of a radiofrequency pulse
determines the axis along which the magnetic field, B;, caused by the
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oscillating radiofrequency current in the coil, appears. Viewed in the usual
rotating frame (rotating at the frequency of the transmitter) this magnetic
field is static and so it is simple to imagine its phase as the angle, 3, between
a reference axis and the vector representing B;. There is nothing to indicate
which direction ought to be labelled x or y; al we know is that these
directions are perpendicular to the static field and perpendicular to one
another. So, provided we are consistent, we are free to decide arbitrarily
where to put this reference axis. In common with most of the NMR
community we will decide that the reference axis is along the x-axis of the
rotating frame and that the phase of the pulse will be measured from x; thus
apulse with phase x has a phase angle, S, of zero. Similarly apulse of phase
y has a phase angle of 90° or 12 radians. Modern spectrometers allow the
phase of the pulse to be set to any desired value.

The NMR signadl, that is the free induction decay (FID), is recorded by
measuring the voltage generated in a coil asit is cut by precessing transverse
magnetization. Most spectrometers take this high-frequency signal and
convert it to the audio-frequency range by subtracting a fixed reference
frequency. Almost always this fixed reference frequency is the same as the
transmitter frequency and the effect of this choice is to make it appear that
the FID has been detected in the rotating frame. Thus the frequencies which
appear in the detected FID are the offset or difference frequencies between
the Larmor frequency and the rotating frame frequency.

Like the pulse, the NMR receiver also has associated with it a phase. If
we imagine at time zero that there is transverse magnetization along the x-
axis (of the laboratory frame) and that a small coil is wound around the x-
axis the voltage induced in the coil as the magnetization precesses is
proportional to the x-component i.e. proportional to cos(wyt). On the other
hand, if the magnetization starts out along the —y axis the induced voltage is
proportional to sin(awwt), ssimply as this is the projection onto the x-axis as
the magnetization vector rotates in the transverse plane. In mathematical
terms the detected signal can be always be written cos(wt + @), where gpisa
phase angle. The magnetization starting out along x gives a signal with
phase angle zero, whereas that starting along —y has a phase angle of —72.

The NMR receiver can differentiate between the cosine and sine
modulated parts of the signals by using two detectors fed with reference
signals which are shifted in phase by 90° relative to one another. The
detection process involves using a device called a mixer which essentially
multiplies together (in an analogue circuit) the incoming and reference
signals. The inputs to the mixers at the reference frequency, wy, take the
form of a cosine and a sine for the two detectors, as these signals have the
required 90° phase shift between them. If the incoming signa is
cos(wnt + ¢) the outputs of the two mixers are

0°: cos(w0+ go)t Ccos gt :%[cos( @+ @ (g)t +cos( W+ @ rgp)t]
90°: cos(w0+(p)t sin q)eft:%[sin(cg+ or gg)t —sin( W+ @ rgo)t]
These outputs are filtered to remove the high frequency components (the

first terms on the right) and the outputs from the 0° and 90° detectors
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become the real and imaginary parts of a complex number. If we add a
damping term and ignore the numerical factors, the detected (complex)
signal is

[cod{ea, + - o Jt-isin( @+ @ )| exp(-Ro)
= exp(-i( — @ )t) xp(-i @ exp(-RY)

Fourier transformation of this signal gives a peak at the offset frequency,
wh — W, and with phase @ If @is zero, then an absorption mode peak is
expected, whereas if @is 772 a dispersion mode peak is expected; in general
aline of mixed phaseis seen. The detector system is thus able to determine
not only the frequency at which the magnetization is precessing, but also its
phasei.e. its position at time zero.

In the above example the two reference signals sent to the two detectors
were chosen deliberately so that magnetization with phase ¢=0 would
result in an absorption mode signal. However, we could alter the phase of
these reference signals to produce any phase we liked in the spectrum. If the
reference signals were cos(wet + ) and sin(wet + ) the FID would be of
the form

[cos(%+ - @)y - Qt —isin( W+ ¢ - )i]eXp(_Rt)
= expl-i(e, — )t exp(-i( - ) exp(-RY)

Now we see that the line has phase (¢- ). The key point to note that as S is
under our control we can alter the phase of the lines in the spectrum simply
by altering the reference phase to the detector.

In modern NMR spectrometers the phase, 3, of this reference is under the
control of the pulse programmer. Thisreceiver phase and the ability to alter
it freely is a key part of phase cycling. The usual language in which the
receiver phase is specified is to talk about "the receiver being aligned along
X", by which it is meant that the receiver phase is set to a value such that if,
at the start of the FID, there were solely magnetization along x the resulting
spectrum would contain an absorption mode signal. Likewise, "aligning the
receiver along —y" means that an absorption mode spectrum would result if
the magnetization were solely along -y at the start of the FID. If the
magnetization were aligned along x instead, such a receiver phase would
result in a dispersion mode spectrum (8= 172).

Of course in practice we can always phase the spectrum to produce
whatever lineshape we like, regardless of the setting of the receiver phase.
Indeed the process of phasing the spectrum and altering the receiver phase
are the same. However, as signals are often combined before Fourier
transformation and phasing, the relative phase shifts that can be obtained by
altering the receiver phase are important.

Figure 1 shows, using the vector model, the relationship between the
position of magnetization at the start of the FID, the recelver phase and the
phase of the lineshape in the corresponding spectrum. In this diagram the
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axis along which the receiver is "aligned” isindicated by a dot, .

e aE r -

Figure 1. lllustration of the lineshape expected in the spectrum (shown underneath the
vector diagrams) for different relative phases of the magnetization (the vector) and the
receiver phase, indicated by e.

4.2.2 Two Simple Examples

6o e

pulse X
receiver X y -X -y

Figure 2 Illustration of how the receiver phase is made to follow the phase of the
magneti zation.

The CYCLOPS phase cycling scheme is commonly used in even the
simplest pulse-acquire experiments. The sequence is designed to cancel
some imperfections associated with errors in the two phase detectors
mentioned above; a description of how this is achieved is beyond the scope
of this discussion. However, the cycle itself illustrates very well the points
made in the previous section. There are four steps in the cycle, the pulse
phase is advanced by 90° on each step, as is the phase of the receiver.
Figure 2 shows simple vector diagrams which illustrate that as the pulse
phase causes the magnetization to appear along different axes the receiver
phase is advanced in step so as to aways be in the same position relative to
the magnetization. The result is that the lineshape is the same for each
repetition of the experiment so that they can all be added together without
cancellation. Thisis exactly what we require as a FID istime-averaged. It
Is easily seen that the absolute phase of the receiver is unimportant, al that
matters is that the receiver phase advances in step with the magnetization
(see exercises).
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Figure 3. lllustration of how failing to move the receiver phase in concert with the phase of
the magnetization leads to signal cancellation; the sum of the spectra shown is zero.

Finally, Fig. 3 shows the result of "forgetting" to move the receiver phaseg; if
the signals from all four steps are added together the signal cancels
completely. Similar cancellation arises if the receiver phase is moved
backwardsi.e. x, -y, =X, y rather than X, y, =X, -y (see exercises).

DD
(D

Figure 4. The effect of atering the phase of the 180° pulse in a spin echo.

A second familiar phase cycle is EXORCYLE which is used in
conjunction with 180° pulses used in spin echoes. Figure 4 shows a ssimple
vector diagram which illustrates the effect on the final position of the vector
when the phase of the 180° pulse is altered through the sequence x, y, —X, -Y.
It is seen that the magnetization refocuses aong the vy, —y, y and -y axes
respectively as the 180° pulse goes through its sequence of phases. If the
four signals were simply added together in the course of time averaging they
would completely cancel one another. However, if the receiver phase is
adjusted to follow the position of the refocused magnetization, i.e. to take
the values y, -y, vy, -y, each repetition will give the same lineshape and so
the signalswill add up. Thisisthe EXORCY CLE sequence.

As before, it does not matter if the receiver is actualy aligned aong the
direction in which the magnetization refocuses, all that matters is that when
the magnetization shifts by 180° the receiver should also shift by 180°.
Thus the receiver phase could just as well have followed the sequence X, —X,
X, =X.

For brevity, and because of the way in which these phase cycles are
encoded on spectrometers, it is usua to refer to the pulse and receiver
phases using numbers with 0, 1, 2, 3 representing phases of 0°, 90°, 180°
and 270° respectively (that is alignment with the x, y, —x and —y axes). So,
the phases for EXORCY CLE can be written as 0 1 2 3 for the 180° pulse
and 0 2 0 2 for thereceiver.

The EXORCY CLE sequence is designed to eliminate those signals which
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do not experience a perfect 180° refocusing pulse. We shall see later that
the concept of coherence order and coherence transfer pathways allows usto
confirm thisin a very general way. However, at this point it is possible to
deduce using the vector approach that if the 180° pulse is entirely absent the
EXORCY LE phase cycle cancels all of the signal (see exercises).

4.2.3 Difference Spectroscopy

So far we have seen that the phase of the detected NMR signal can be
influenced by the phase of both the pulses and the receiver. We have also
seen that it is perfectly possible to cancel out all of the signal by making
inappropriate choices of the pulse and receiver phases. Of course we
generaly do not want to cancel the desired signal, so these examples were
not of practical relevance. However, there are many occasions in which we
do want to cancel certain signals and preserve others. Often the required
cancellation can be brought about by a simple difference experiment in
which the signal is recorded twice with such a choice of pulse phases that
the required signals change sign between the two experiments experiment
and the unwanted signals do not. Subtracting the two signals then cancels
the unwanted signals. Such a difference experiment can be considered as a
two-step phase cycle.

A good example of the use of this simple difference procedure is in the
INEPT experiment, used to transfer magnetization from spin | to a coupled
spin S. The sequenceisshownin Fig. 5.

; I I
1
1420 120
4 o -

¥
Figure5 The pulse sequence for INEPT. In this diagram the filled rectangles represent 90°

pulses and the open rectangles represent 180° pulses. Unless otherwise stated the pulses
have phase x.

With the phases and delays shown equilibrium magnetization of spinl, I, is
transferred to spin S appearing as the operator S  Equilibrium
magnetization of § S, appears as —-S,. Often this latter signal is an
inconvenience and it is desirable to suppress it. The procedure is very
simple. If we change the phase of the first | pulse from x to —x the final
magnetization arising from transfer of the | magnetization to S becomes —S;
I.e. it changes sign. In contrast, the signal arising from equilibrium S
magnetization is unaffected smply because the S, operator is unaffected by
the first 90° pulse to spin |. By repeating the experiment twice, once with
the phase of the first pulse set to x and once with it set to —x, and then
subtracting the two resulting signals, the undesired signal is cancelled and
the desired signal adds.

This simple difference experiment can be regarded as a two-step phase
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cycle in which the first | pulse has phases 0 2 and the receiver follows with
phases 0 2. The difference is achieved in the course of time averaging (i.e.
as the time domain signals are accumulated from different scans) rather than
by recording the signals separately and then subtracting them.

It is easy to confirm that an alternative is to cycle the second | spin 90°
pulse 0 2 along with a recelver phase of 0 2. However, cycling the S spin
90° pulse is not effective at separating the two sources of signal as they are
affected in the same way by changing the phase of this pulse (see exercises).

Difference spectroscopy reveals one of the key features of phase cycling:
that is the need to identify a pulse whose phase affects differently the fate of
the desired and undesired signals. Cycling the phase of this pulse can then
be the basis of discrimination. In many experiments a simple cycle of 0 2
on a suitable pulse and the receiver is al that is required to select the desired
signal. Thisis particularly the case in heteronuclear experiments, of which
the INEPT sequence is the prototype. Indeed, even the phase cycling used in
the most complex three- and four-dimensional experiments applied to
labelled proteins is little more than this simple cycle repeated a number of
times for different transfer steps.

4.2.4 Basic Concepts

Although we can make some progress in writing simple phase cycles by
considering the vector picture, a more general framework is needed in order
to cope with experiments which involve multiple quantum coherence and
related phenomena. We also need a theory which enables us to predict the
degree to which a phase cycle can discriminate against different classes of
unwanted signals. A convenient and powerful way of doing both these
things is to use the coherence transfer pathway approach.

4.2.4.1 Coherence Order

Coherences, of which transverse magnetization is one example, can be
classified according to a coherence order, p, which is an integer taking
values 0,+1,£2 ... Single quantum coherence has p == 1, double has
p =+ 2 and so on; zmagnetization, "zZ' terms and zero-quantum coherence
have p = 0. This classification comes about by considering the way in which
different coherences respond to a rotation about the z-axis. A coherence of

(p)

order p, represented by the density operator 0*", evolves under a z-rotation

of angle gaccording to

~igF.)o expligF) = exp(~i o)
exp(~i6.Jo " explif.) = e i peJo 8

where F; is the operator for the total z-component of the spin angular
momentum. In words, a coherence of order p experiences a phase shift of
- p@. Equation [1] isthe definition of coherence order.

As an example consider the pure double quantum operator for two
coupled spins, 211,y + 2l4ylox. This can be rewritten in terms of the raising

and lowering operators for spini, | and |, defined as
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to give i-l(| AR |1-|2-). The effect of a zrotation on the raising and

172
lowering operatorsis, in the arrow notation,

120t exp(Fig);
Using this, the effect of az-rotation on theterm 1,1, can be determined as

51; 0% ep( 910 f7 exp( i gexp i9)11;

Thus, as the coherence experiences a phase shift of —2¢ the coherence is
classified according to Egn. [1] as having p = 2. It is easy to confirm that the

teem 11, has p=-2. Thus the pure double quantum term,
21, 1,,+2l,,1,,, isan equal mixture of coherence orders +2 and —2.

As this example shows, it is possible to determine the order or orders of
any state by writing it in terms of raising and lowering operators and then
simply inspecting the number of raising and lowering operators in each
term. A raising operator contributes +1 to the coherence order whereas a
lowering operator contributes —1. A z-operator, li;, does not contribute to
the overall order asit isinvariant to z-rotations.

Coherences involving heteronuclel can be assigned both an overall order
and an order with respect to each nuclear species. For example the term

|,’S, has an overall order of O, is order +1 for the | spins and -1 for the S

spins. Theterm I,1,S,, isoveral of order 2, is order 2 for the | spins and
isorder O for the Sspins.

4.2.4.2 Phase Shifted Pulses

A radiofrequency pulse causes coherences to be transferred from one
order to one or more different orders; it is this spreading out of the
coherence which is responsible both for the richness of multiple-pulse NMR
and for the need for phase cycling to select one transfer among many
possibilities. An example of this spreading between coherence orders is the
effect of a non-selective pulse on antiphase magnetization, such as 21,12,
which corresponds to coherence orders £1. Some of the coherence may be
transferred into double- and zero-quantum coherence, some may be
transferred into two-spin order and some will remain unaffected. The
precise outcome depends on the phase and flip angle of the pulse, but in
genera we can see that there are many possibilities.

If we consider just one coherence, of order p, and consider its transfer to
a coherence of order p' by a radiofrequency pulse we can derive a very
genera result for the way in which the phase of the pulse affects the phase
of the coherence. It is on this relationship that the phase cycling method is
based.
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We will write the initial state of order p as ol?) and represent the effect
of the radiofrequency pulse causing the transfer by the unitary
transformation U(¢@where @is the phase of the pulse. The initia and final
states are related by the usual transformation

U(0)o!Pu(0)™ =o!® + termsof other orders 2]

the other terms will be dropped as we are only interested in the transfer from
p to p'. The transformation brought about by a radiofrequency pulse phase
shifted by ¢, U(¢), is related to that with the phase set to zero, U(0), by the
rotation

U (@) = exp(-igF,)U (0)expligF,) [3]

Using this the effect of the phase shifted pulse on the initial state ol?) can
be written

-1

U(g)o"u(g)" =
exp(-igF,)U Q)exp(ieF,)o exp(-igF,JU (0) "explieF) 1

The central rotation of o', exp(i qFZ)a(") exp(—inZ), can be replaced,
using Egn. [1], by exp(i p(p)a(p) so that the right-hand side of Eqgn. [4]
simplifiesto
exp(i pg) exp(-igF,)u (0)a U (0) ™ expli¢F,)
We now use Eqn. [2] to rewrite U (0)aPU (0) ™ as a'?) thus giving
exp(i pg) exp(-i¢F,)o'” expligF,)

Once again we apply Egn. [2] to determine the effect of the z-rotations on
the state "), giving the final result

_ N (p) . (r)
exp(i pg)exp(-i p'p)o'”) = exp(-i apg)o'® [5]

where the change is coherence order, Ap, isdefined as (p' — p). Returning to
Eqgn. [] we can now use Eqgn. [5] to rewrite the right hand side and hence
obtain the simple result
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(p) - _i ()
U((p)a U((p) —exp( 1 Ap (p)a 6]

This relationship result tells us that if we consider a pulse which causes a
change in coherence order of Ap then atering the phase of that pulse by an
angle @will result in the coherence acquiring a phase label —Ap ¢ In other
words a particular change in coherence order acquires a phase label when
the phase of the pulse causing that change is atered; the size of this label
depends on the change in coherence order. It is this property which enables
us to separate different changes in coherence order from one another by
altering the phase of the pulse.

Before seeing how this key relationship is used in practice there are two
remarks to make. The first concerns the transformation U(¢). We have
described this as being due to a radiofrequency pulse, but in fact any
sequence of pulses and delays can be represented by such a transformation
so our final result is general. Thus we can, for the purposes of analysing the
effects of a pulse sequence, group one or more pulses and delays together
and ssimply consider them as a single unit causing a transformation from one
coherence order to another. The whole unit can be phase shifted by shifting
the phase of al the pulses in the unit. We shall see some practica
applications of this later on. The second comment to make concerns the
phase which is acquired by the transferred coherence: this phase appears as a
phase shift of the final observed signal, i.e. the position of the observed
magnetization in the xy-plane at the start of acquisition. A particular
coherence may undergo several transformations before it is observed finally
, but at each stage these phase shifts are carried forward and so affect the
final signal. Thus, athough the coherence of order p' resulting from the
transformation U may not itself be observable, any phase it acquires in the
course of the transformation will ultimately be observed as a phase shift in
the observed signal derived from this coherence.

4.2.4.3 Selection of a Single Pathway

To focus on the issue at hand let us consider the case of transferring from
coherence order +2 to order —1. Such atransfer has Ap = (-1 - (2) ) = =3.
Let us imagine that the pulse causing this transformation is cycled around
the four cardinal phases (x, y, —x, -y, i.e. 0°, 90°, 180°, 270°) and draw up a
table of the phase shift that will be experienced by the transferred coherence.
Thisis simply computed as— Ap ¢, in this case = — (-3) @

step pulsephase phase shift experienced by equivalent phase
transfer with Ap = -3

1 0 0 0
2 90 270 270
3 180 540 180
4 270 810 90

The fourth column, labelled "equivalent phase’, is just the phase shift
experienced by the coherence, column three, reduced to be in the range O to
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360° by subtracting multiples of 360° (e.g. for step 3 we subtracted 360° and
for step 4 we subtracted 720°).

If we wished to select this change in coherence order of -3 we would
simply shift the phase of the receiver in order to match the phase that the
coherence has acquired, which are the phases shown in the last column. |If
we did this, then each step of the cycle would give an observed signal of the
same phase and so they four contributions would al add up. This is
precisely the same thing as we did when considering the CYCLOPS
sequence in section 4.2.2; in both cases the receiver phase follows the phase
of the desired magnetization or coherence.

We now need to see if this four step phase cycle eliminates the signals
from other pathways. Let us consider, as an example, a pathway with
Ap = 2, which might arise from the transfer from coherence order —1 to +1.
Again we draw up atable to show the phase experienced by a pathway with
Ap = 2, that is computed as— (2) @

step pulse  phaseshift  equiva rx. phase difference

phase  experienced lent to
by transfer phase select
withAp=2 Ap=-3
1 0 0 0 0 0
2 9 -180 180 270 270—-180=90
3 180 —-360 0 180 180-0=180
4 270 —540 180 90 90 -180=-90

As before, the equivalent phase is ssmply the phase in column 3 reduced to
the range 0 to 360°. The fifth column shows the receiver (abbreviated to
rx.) phases that would be needed to select the transfer with Ap = -3, that is
the phases determined in the first table. The question we have to ask is
whether or not these phase shifts will lead to cancellation of the transfer
with Ap = 2. To do this we compute the difference between the receiver
phase, column 5, and the phase shift experienced by the transfer with Ap =
2, column 4. The results are shown in column 6, labelled "difference”,
which shows the phase difference between the receiver and the signal arising
from the transfer with Ap = 2. It is quite clear that the receiver is not
following the phase shifts of the coherence. Indeed it is quite the opposite.
Step 1 will cancel with step 3 as the 180° phase shift between them means
that the two signals have opposite sign. Likewise step 2 will cancel with
step 4 as there is a 180° phase shift between them. We conclude, therefore,
that this four step cycle cancels the signal arising from a pathway with Ap =
2.

An dternative way of viewing the cancellation is to represent the results
of the "difference” column by vectors pointing at the indicated angles. This
isshownin Fig. 6 and it is clear that the opposed vectors cancel one another.
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step 1 2 3 4
difference 0° 90° 180° -90°

Figure 6. A visualisation of the phases from the "difference” column.

Next we consider the coherence transfer with Ap = +1. Again, we draw
up the table and calculate the phase shifts experience by this transfer from —

(e

Step pulse phase shift  equiva rX. difference
phase experienced lent  phaseto
by transfer phase  <dect
withAp =+1 Ap=-3
1 0 0 0 0 0
2 90 -90 270 270 270-270=0
3 180 -180 180 180 180-180=0
4 270 —270 90 90 90-90=0

Here we see quite different behaviour. The equivalent phases, that is the
phase shifts experienced by the transfer with Ap = 1, match exactly the
receiver phase determined for Ap = -3, thus the phases in the "difference’
column are al zero. We conclude that the four step cycle selects transfers
both with Ap = -3 and +1.

Some more work with tables such as these (see exercises) will reveal that
this four step cycle suppresses contributions from changes in coherence
order of -2, —1 and 0. It selects Ap = -3 and 1. It also selects changes in
coherence order of 5, 9, 13 and so on. This latter sequence is easy to
understand. A pathway with Ap = 1 experiences a phase shift of -90° when
the pulse is shifted in phase by 90°; the equivalent phase is thus 270°. A
pathway with Ap = 5 would experience a phase shift of -5 x 90° = —450°
which corresponds to an equivalent phase of 270°. Thus the phase shifts
experienced for Ap = 1 and 5 are identical and it is clear that a cycle which
selects one will select the other. The same goes for the seriesAp =9, 13 ...

The extension to negative values of Ap is also easy to see. A pathway
with Ap = -3 experiences a phase shift of 270° when the pulse is shifted in
phase by 90°. A transfer with Ap = +1 experiences a phase of -90° which
corresponds to an equivalent phase of 270°. Thus both pathways experience
the same phase shifts and a cycle which selects one will select the other.
The pattern is clear, this four step cycle will select a pathway with Ap = -3,
as it was designed to, and also it will select any pathway with Ap =-3 +4n
wheren=11,+2, +3 ...
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4.2.4.4 General Rules

The discussion in the previous section can be generalised to the
following:

Consider a phase cycle in which the phase of a pulse takes N evenly spaced
steps covering the range O to 2mtradians i.e. the phases, ¢, are 21k/N where
k=0,1,2..(N-1). Toselectachangein coherence order, Ap, the receiver
phase is set to —-Ap x ¢ for each step and all the resulting signals are
summed. This cycle will, in addition to selecting the specified change in
coherence order, aso select pathways with changes in coherence order Ap
NN wheren=+1, +2 ..

The way in which phase cycling selects a series of values of Ap which are
related by a harmonic condition is closely related to the phenomenon of
aliasing in Fourier transformation. Indeed, the whole process of phase
cycling can be seen as the computation of a discrete Fourier transformation
with respect to the pulse phase. The Fourier co-domains are phase and
coherence order.

The fact that a phase cycle inevitably selects more than one change in
coherence order is not necessarily a problem. We may actually wish to
select more than one pathway, and examples of this will be given below in
relation to specific two-dimensiona experiments. Even if we only require
one value of Ap we may be able to discount the values selected at the same
time as being improbable or insignificant. In a system of m coupled spins
one-half, the maximum order of coherence that can be generated is m, thus
in atwo spin system we need not worry about whether or not a phase cycle
will discriminate between double quantum and six quantum coherences as
the latter smply cannot be present. Even in more extended spin systems the
likelihood of generating high-order coherences is rather small and so we
may be able to discount them for all practical purposes. If a high level of
discrimination between orders is needed, then the solution is simply to use a
phase cycle which has more steps i.e. in which the phases move in smaller
increments. For example a six step cycle will discriminate between Ap = +2
and +6, whereas afour step cycle will find these to be identical.

4.2.45 Coherence Transfer Pathways
In multiple-pulse NMR it is important to specify the coherences which
should be present at each stage of the sequence. This is conveniently done

using a coherence transfer pathway (CTP) diagram. Figure 7 shows such a
diagram for the DQF COSY sequence.

| - I_I\\/\v/\f
— @
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Figure 7. The pulse sequence and coherence transfer pathway for DQF COSY .

The solid lines under the sequence represent the coherence orders required
during each part of the sequence; as expected the pulses cause changes in
coherence order. In this example we have more that one coherence order
present in some of the time periods; this is a common feature. In addition
we notice that the second pulse causes a transfer between orders £1 and 2,
with all connections being present. Again, such a "fanning out" of the
coherence transfer pathway is common in many experiments.

There are a number of remarks to be made about the CTP diagram.
Firstly, we should remember that this pathway is just the desired pathway
and that it must be established separately that the pulse sequence and the
spin system itself is capable of supporting the specified coherences. Thus
the DQF COSY sequence could be applied, aong with a suitable phase
cycle to select the specified pathway, to uncoupled spins but we would not
expect to see any peaks in the spectrum. Likewise, the sequence itself must
be designed appropriately, the phase cycle cannot select something that the
pul se sequence does not generate.

The second point to note is that the coherence transfer pathway must start
with p = 0, that is the coherence order which corresponds to equilibrium
magnetization. In addition, the pathway has to end with |p| = 1 asitis only
single quantum coherence that is observable. If one uses quadrature
detection, that is the method described in section 4.2.1 in which effectively
both the x and y components of the magnetization are measured, it turns out
that one is observing either p = +1 or —1. The usual convention, which fits
in with the normal convention for the sense of rotation, is to assume that we
are detecting p = —1; we shall use this throughout.

Finally, we note that only a limited number of possible coherence orders
are shown - in this case just those between —2 and +2. As was discussed
above we need to remember that the spin system may be capable of
supporting higher orders of coherence and take this into account when
designing the phase cycle.

4.2.4.6 Refocusing Pulses

180° pulses give rise to arather special coherence transfer pathway: they
simply change the sign of the coherence order. We can see how this arises

by considering the effect of a 180° pulse to the operators 1, and |~

1ot 17

The operator on the right simply has the opposite sign of coherence order to
that on the left. The same will be true of al of the raising or lowering
operators of the different spins present and affected by the 180° pulse; the
result is also valid, to within a phase factor, for any phase of the pulse (see
EXercises).

We can now derive the EXORCYLE phase cycle using this property.
Consider a spin echo and the coherence transfer diagram shown in Fig. 8.
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Figure 8. A spin echo and the corresponding CTP.

As discussed above, the CTP starts with coherence order O and ends with
order —1. Since the 180° pulse simply swaps the sign of the coherence
order, the order +1 must be present prior to the 180° pulse. Thus the 180°
pulse is causing the transformation from +1 to -1, which isa Ap of —2. A
phase cycle of four stepsis easy to draw up

step  phase of phase shift experienced  equivalent phase

180° pulse by transfer with Ap = -2 = rx. phase
1 0 0 0
2 90 180 180
3 180 360 0
4 270 540 180

The phase cycle isthus 0 1 2 3 for the 180° pulse and 0 2 O 2 for the
receiver, which is just EXORCYCLE. As the cycle has four steps, the
pathway with Ap = +2 is also selected (shown dotted in Fig. 8). Although
this pathway does not lead to an observable signal in this experiment its
simultaneous selection in multiple pulse experiments where further pulses
follow the spin echo is a useful feature. An eight step cycle can be used to
select the refocusing of double quantum in which the transfer isfrom p = +2
to -2 (i.e. Ap = —4) or vice versa (see exercises). A two step cycle, 0 2 for
the 180° pulse and O O for the receiver, will select all even values of Ap (see
EXErcises).

4.2.5 Lineshapesand Frequency Discrimination

The selection of a particular coherence transfer pathway is closely
connected to two important aspects of multi-dimensional NMR experiments,
that of frequency discrimination and lineshape selection. By frequency
discrimination we mean the steps taken to ensure that the signs of the
frequencies of the coherences evolving the indirectly detected domains can
be determined. Typically this is done by using the States-Haberkorn-Ruben
or TPPI methods. Lineshape selection is closely associated with frequency
discrimination, and a particular frequency discrimination method resultsin a
particular lineshape in the indirectly detected domains. It isclearly apriority
to obtain the best lineshape possible, which generally means an absorption
mode line. The issues are the same for two- and higher-dimensional spectra
so we will consider just the simplest case.

A typica two-dimensional experiment "works' by transferring a
component of magnetization, say of spin i, present at the end of the
evolution time, t1, through some mixing process to another spin, say j. The
size of the transferred component varies as a function of t;; it is said to be
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modulated in t;. If the modulation frequency is Q; then the final steps of the
two-dimensional experiment can be represented as

cosQtl,, OB cosQl 7]

where we have assumed that the x-component is transferred. The signa is
detected during t; in the usual way, using the detection scheme (called
quadrature detection) described in section 4.2.1. This results in a signal
which can be considered as a complex quantity and can be written as

cosQitlexp(i thz)

Such a signa is said to be amplitude modulated in t;. If we return to the
mixing step sketched in Eqn. [7] we can reveal the underlying processes by
re-writing the operators lix in terms of the raising and lowering operators

teosQt[l +17| O fcosQl, 6]

The implication of this is that to obtain amplitude modulation coherence
orders +1 and —1 must both contribute, and contribute equally, to the
transferred signal. Thisis the condition for obtaining amplitude modulation,
and phase cycles for two- and higher-dimensional experiments need to be
written in such a way as to retain "symmetrical pathways' in t;. Once this
has been achieved, frequency discrimination can be added by using one of
the usual methods.

It is possible to use a phase cycle to achieve frequency discrimination.
One simply writes a cycle which selects one coherence order, i.e. p = +1,
during t;. In effect what this achieves is the selection of transfer (mixing)

from one operator, such as |, rather than from the combination of 1" and
| given in Eqgn. [8]. Since under free evolution the operator 1, simply

acquires a phase term, of the form of exp(i €;t;), the resulting signal is
phase modulated in t; and thus frequency discrimination is achieved. Such a
procedure is called echo-/anti-echo selection, or P-/N-type selection. It is
illustrated in the following section for the simple COSY experiment.

4.25.1 P-and N-Type COSY

Figure 9. The pulse sequence for COSY with the CTP for the P-type spectrum shown as the
solid line, and that for the N-type spectrum as a dashed line.
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Figure 9 shows the simple COSY pulse sequence and two possible (and
alternative) coherence transfer pathways. Both pathways start with p = 0
and end with p = -1, as described above. They differ, however, in the sign
of the coherence order present during t;. In the first case (the solid line) the
order present is p = —1, the same as present during acquisition. Such a
spectrum will be frequency discriminated, as was described above, and a
diagonal peak at a positive offset in F, will also be at a positive offset in F.
In contrast, a spectrum recorded such that p = +1 is present during t; (the
dotted line) will have opposite offsets in the two dimensions. This arises

because athough the operators 1, and I, both acquire a phase dependent

on the offset Q;, the sign of this phase modulation is opposite. In the usual
notation

Qi I,

12000 % exp(FiQt)l:

Selection of one of these pathways gives a signal which is phase modulated
in both t; and t,. Subsequent two-dimensional Fourier transformation will
give a peak in the spectrum which has the phase-twist lineshape. Thisis not
a suitable lineshape high-resolution work and thus this method of selection
isnot generally used in demanding applications.

The spectrum in which the sign of the modulating frequencies, and hence
the sign of the coherence order, isthe samein t; and t; is called the P-type or
anti-echo spectrum. Where these signs are opposite, one obtains the N-type
or echo spectrum. The echo/anti-echo terminology arises because the
pathway leading to the echo spectrum has Ap = -2 for the last pulse, which
is analogous to the spin echo and indeed this pulse does result in partial
refocusing of inhomogeneous broadening.

The phase cycles are ssmple to construct. We first note a short-cut in that
the first pulse can only generate transverse magnetization from z-
magnetization. It is quite impossible for it to generate multiple quantum
coherence. Thus we can assume that the only p = £1 are present during t;.
Our attention is therefore focused on the last pulse. In the case of the N-type
spectrum we need to select the pathway with Ap = —2, and we have aready
devised a cycle to do thisin section 4.2.4.6 - it is simply EXORCYCLE in
which the last 90° pulse goes 0 1 2 3 and the receiver goes0 2 0 2. To
select the P-type spectrum the required pathway has Ap = O, for which the
phase cycle is simply 0 1 2 3 on the final 90° pulse and 0 0 0 O on the
receiver, i.e. as Ap = 0 the coherence pathway experiences no phase shifts.
Of course the unwanted pathways will experience phase shifts and thus will
be cancelled.

If multiple quantum coherence is present during t; of a two-dimensional
experiment the same principles apply, although smaller steps will be needed
in order to select the required pathways (see exercises).
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426 TheTricksof the Trade

1
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Figure 10 A smple CTP.

Suppose that we wish to select the ssmple pathway shown in Fig. 10. At
the first pulse Ap is 1 and for the second pulse Ap is—2. We can construct a
four-step cycle for each pulse, for example, but to select the overall pathway
as shown these two cycles have to be completed independently of one
another. This means that there will be a total of sixteen steps, and that the
phase of the receiver must be set according to the phase acquired by shifting
both pulses. The table shows how the appropriate receiver cycling can be
determined

step phaseof phasefor phaseof phasefor  total equivalent
1st Ap=1 2nd Ap=-2 phase Phase=rx.

pulse pulse phase

1 0 0 0 0 0 0

2 90 -90 0 0 -90 270
3 180 -180 0 0 -180 180
4 270 —270 0 0 —270 90
5 0 0 90 180 180 180
6 90 -90 90 180 90 90
7 180 -180 90 180 0 0

8 270 —270 90 180 -90 270
9 0 0 180 360 360 0

10 90 -90 180 360 270 270
11 180 -180 180 360 180 180
12 270 —270 180 360 90 90
13 0 0 270 540 540 180
14 90 -90 270 540 450 90
15 180 -180 270 540 360 0

16 270 —270 270 540 270 270

Thisis not as complex as it seems. In the first four steps the second pulse
has constant phase and the first ssmply goes through the four cardinal
phases, 0 1 2 3. As we are selecting Ap = 1, the receiver simply runs
backwards (the opposite to CYCLOPS), 0 3 2 1. Steps 4 to 8 are the same
except that the phase of the second pulse has been moved by 90°. This
shifts the required pathway with Ap = -2 by 180° so the receiver phases for
these steps are just 180° in advance of the corresponding first four steps, i.e.
2 1 0 3. The next four steps are a repeat of the first four as shifting the
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phase of the second pulse by 180° results in a complete rotation of the
coherence and so there is no net effect. The final four steps are the same as
the second four, except that the second pulse is shifted by 270°.

The key to devising these sequences is to ssimply work out the two four-
step cycles independently and the merge them together rather than trying to
work on the whole cycle. One writes down the first four steps, and then
duplicates this four times as the second pulse is shifted. Y ou should get the
same steps, in adifferent sequence, if you shift the phase of the second pulse
in thefirst four steps (see exercises).

We can see that the total size of a phase cycle grows at an alarming rate.
With only four phases for each pulse the number of steps grows as4' where |
is the number of pulsesin the sequence. A prospect of a 64 step phase cycle
for smple experiments like NOESY and DQF COSY isadaunting one. We
may not wish to repeat each t; increment 64 times, although of course if the
spectrum were weak we may end up doing this anyway simply to improve
the signal-to-noise ratio.

The "trick" to learn is that you need not phase cycle each pulse. For
various reasons there are shortcuts which can be used to reduce the number
of pulses which need to be cycled. To find out what these shortcuts are you
need to understand how the pulse sequence works and what al the pulses
do. Sometimes, we can make shortcuts by ignoring certain possibilities, on
the grounds that there are unlikely and that if they do occur they will
sufficiently rare to be tolerable.

We will illustrate all of these points with reference to the DQF COSY
pulse sequence, shown in Fig. 7 along with its coherence transfer diagram.
We have aready noted the need to retain the p = £1 pathways during t; in
order to be able to compute an absorption mode spectrum. Note also that
the coherence orders +1 in t; are each connected to p = £2 during the double
quantum filter delay and that both of these double quantum levels are
connected to p = —1 which is observed. A detailed analysis of this sequence
will show that in genera all of these pathways are present and equally likely.

4.2.6.1 TheFirst Pulse

We have aready commented on this in relation to the COSY experiment.
Starting from equilibrium magnetization, li,, a ssimple pulse can generate
only transverse magnetization with coherence orders +1. Thus it is not
necessary to cycle this first pulse to select the pathway shown in Fig. 7. We
note here for completeness that the first pulse, if it is imperfect, may leave
some magnetization aong the z-axis and thus the fate of this magnetization
needs to be considered in relation to the rest of the pulse sequence. This
residual z-magnetization is present during t; as coherence order zero. We
will return to thisin section 4.2.6.4.

4.2.6.2 Grouping Pulses Together

In section 4.2.4.2 we noted that the phase shift of a particular pathway by
—Ap @applied for the case where the transfer was brought about by a single
pulse or by a group of pulses (and delays) whose phases are moved together.
Essentialy we are regarding the group of pulses as a single entity and may
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phase cycle it in such a way as to select a particular value of Ap. It is
important to realise, however, that the selection will ssimply be for a
particular change in coherence order brought about by the whole group of
pulses. The phase cycle will not select for what coherence transfers take
place in the group. Theidea of grouping pulses together thus has to be used
carefully asit may lead to ambiguities.

In the DQF COSY sequence we have aready noted that the pathways
Ap =1 are inherently selected by the first pulse, so we should create no
ambiguity by simply grouping the first two pulses together and cycling them
as a unit to select the overall pathway Ap = £2. Such a move will retain the
symmetrical pathways required during t; and the complex series of transfers
brought about by the second pulse are selected inherently. If we use afour-
step cycleto select Ap = +2, we will also select —2 at the sametime, whichis
just what we require.

The cycleis devised in the usual way

step phaseof first phasefor phasefor equivalent phase=

twopulses Ap=+2 Ap=-2 rx. phase
1 0 0 0 0
2 90 -180 180 180
3 180 -360 360 0
4 270 -540 540 180

The equivalent phase is the same for both pathways, Ap = £+2. The overall
phase cycle is thus for the first two pulsesto go 0 1 2 3, the third pulse to
remain fixed and the receiver togo 0 2 0 2. We shall seein the next section
that thisis sufficient to select the required pathway.

The four-step cycle also selects Ap = 6, so there is the possibility of
signas arising due to filtration through six-quantum coherence. In normal
spin systems the amount of such high order coherences that can be generated
iIsusually very small so that in practice we can discount this possibility.

Finally, we need to consider z-magnetization which may be |eft over after
an imperfect initial 90° pulse or which arises due to relaxation during t;. If
signals are derived from such magnetization they giveriseto peaksat F; =0
in the spectrum simply because magnetization does not precess during t; and
so has no frequency label; such peaks are called axial peaks.

Z-Magnetization present at the end of t; will be turned to the transverse
plane by the second 90° pulse, generating coherences +1 as before. The
second pulseis being cycled 0 1 2 3 aong with the receiver going 0 2 0 2;
such a cycle suppresses the pathway Ap = +1 and so axial peaks are
suppressed.

4.2.6.3 ThelLast Pulse

The final pulse in a sequence has some special features which may be
exploited when trying to reduce a phase cycle to its minimum. This pulse
may cause transfer to many different orders of coherence but only one of
these, that with p = —1, is observable. Thus, if we have aready selected, in
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an unambiguous way, a particular set of coherence orders present just before
the last pulse, no further cycling of this pulse is needed. The fact that we
can only observe p = -1 will "naturally” select what we want. The DQF
COSY phase cycle proposed in the previous section achieves this result in
that it selects p = +2 just before the last pulse. No further cycling is
required, therefore.

We can view this property of the final pulse in a different way. Looking
at the DQF COSY sequence we see that the two required pathways to be
brought about by the final pulse have Ap= -3 and +1. Asthe only detectable
signal has p = —1, the selection of these two pathways will guarantee that the
only contributors to the observed signal will be from coherences with orders
p= £2 present just before this pulse. Cycling just the last pulse will thus
achieve all that we require. In section 4.2.6 we have aready devised a phase
cycle to select Ap = +1, the pulse goes 0 1 2 3 and the receiver goes
032 1. Asthisisafour-step cycle we see immediately that Ap = -3 isaso
selected, which is what is required. Other, higher order pathways are
selected, such as Ap = +5 or —7; these can most probably be ignored safely.

Finally we ought to consider the fate of any z-magnetization present at
the end of t;. Thisisturned to coherence orders +1 by the second pulse and
so for it to be observable (i.e. p = —1) during acquisition it must undergo a
transfer by the last pulse of Ap = 0 or —2. Both of these are blocked by the
phase cycle, so axial peaks are suppressed.

We now have two alternative four step cyclesfor DQF COSY; in section

4.2.6.5, we will show that despite their different origins they are more or
less the same.

4.2.6.4 Axial Peak Suppression

Sometimes we want to write a phase cycle in which there is an added
explicit step to suppress axial peaks. In principle and strictly according to
theory this is not always necessary as the magnetization that leads to axial
peaks is often suppressed by the phase cycle used for coherence selection.

A simple two step phase cycle suffices for this suppression. The first
pulse is supposed to result in the pathway Ap = +1 and such a pathway is
selected, along with others, using the two step cycle in which the pulse goes
0 2 and the receiver goes 0 2 aso. Any magnetization which arrives at the
receiver but which has not experienced the phase shift from the first pulse
will be cancelled. The cycle thus eliminates all peaks in the spectrum, such
as axial peaks, which do not arise from the first pulse. Of course this two-
step cycle does not select exclusively Ap = +1, but most importantly it does
regject Ap = O whichisone likely source of axia peaks.

4.2.6.5 Shifting the Whole Sequence

If we group all of the pulses in the sequence together and regard them as
a unit they simply achieve the transformation from equilibrium
magnetization, p = 0, to observable magnetization, p = —1. They could be
cycled as a group to select this pathway with Ap = -1, that is the pulses
going 0 1 2 3 and the receiver going 0 1 2 3. This is of course the

421



CY CLOPS phase cycle. If time permits we sometimes add CY CLOPS-style
cycling of al of the pulses in the sequence so as to suppress some artefacts
associated with imperfections in the receiver. Adding such cycling does, of
course, extend the phase cycle by afactor of four.

This idea of shifting all of the pulses in the sequence has other
applications. Consider the DQF COSY phase cycle proposed in section
4.2.6.3:

step 1st pulse 2nd pulse 3rd pulse receiver

1 0 0 0 0

2 0 0 90 270
3 0 0 180 180
4 0 0 270 90

Suppose we decide, for some reason, that we do not want to shift the
receiver phase, but want to keep it fixed at phase zero. If we add 90° to the
phase of al the pulses in step 2, then we will need aso to add 90° to the
receiver asthe overall transformation is Ap = —1; this puts the receiver phase
at 0°. In the same way we can add 180° to al the pulses and the receiver for
step 3 and 270° for step 4. Once al the phases are reduced to the usual
range of O to 360° we have

step 1st pulse 2nd pulse 3rd pulse receiver

1 0 0 0 0
2 90 90 180 0
3 180 180 0 0
4 270 270 180 0

The result looks rather strange, as we seem to be shifting the phase of all of
the pulses at the same time. However, we know that, in a formal way, it is
exactly the same cycle aswas devised in section 4.2.6.3 By writing it in this
way, however, the way in which the cycle works is rather obscured.

In the case of DQF COSY there is probably no reason for adopting this
procedure. However, a case where it might be useful is when a phase cycle
cals for phase shifts of other than multiples of 90° for the receiver. Some
spectrometers allow fine resolution phase shifting of the pulse phase, but
only alow 90° steps for the receiver. In such cases the required phase shifts
of the received can be generated in effect by moving the phase of all the
pulses until the receiver phases are at multiples of 90° (see exercises).

We can play one last trick with the phase cycle given in the table. Asthe
third pulse is required to achieve the transformation Ap = -3 or +1 we can
ater its phase by 180° and compensate for this by shifting the receiver by
180° also. We apply thistrick to the phase of the third pulse for steps 2 and
4to givethecycle
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step 1st pulse 2nd pulse 3rd pulse receiver

1 0 0 0 0
2 90 90 0 180
3 180 180 0 0
4 270 270 0 180

This is just the cycle proposed in section 4.2.6.2. We have then three
different phase cycles, each of which, despite looking rather different
achieves the same result.

4.2.7 More Examples

4.2.7.1 Homonuclear Experiments

|H| - I\AA

<
<
q

Figure 11 The pulse sequence and CTP for double-quantum spectroscopy.

Double Quantum Spectroscopy: A simple sequence for double quantum
spectroscopy is shown in Fig. 11; note the retention of both pathways with
p = =1 during the initial spin echo and with p = 2 during t;. There are a
number of possible phase cycles for this experiment and, not surprisingly,
they are essentially the same as those for DQF COSY . If we regard the first
three pulses as a unit, then they are required to achieve the overal
transformation Ap = +2, which is the same as that for the first two pulsesin
the DQF COSY sequence. Thus the same cycle can be used with these three
pulsesgoing 0 1 2 3 and the receiver going 0 2 0 2. Alternatively the final
pulse can be cycled 0 1 2 3 with the receiver going 0 3 2 1, asin section
4.2.6.3.

Both of these phase cycles can be extended by EXORCY CLE phase
cycling of the 180° pulse, resulting in atotal of 16 steps (see exercises).

N I e

|

Figure 12. The pulse sequence and CTP for NOESY ..

NOESY: The sequence is shown in Fig. 12. Again it can be viewed in two
ways. If we group the first two pulses together they are required to achieve
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the transformation Ap = 0 and this leads to a four step cycle in which the
pulses go 0 1 2 3 and the receiver remains fixed as 0 0 0 0. In this
experiment axial peaks arise due to z-magnetization recovering during the
mixing time, and this cycle will not suppress these contributions as there is
no suppression of the pathway Ap = —1 caused by the last pulse. Thus we
need to add axial peak suppression, which is conveniently done by adding
the simple cycle 0 2 on the first pulse and the receiver. The final 8 step
cycleislstpulsee 0123 2301,2ndpulse:0123 0123, 3rdpulse
fixed, receiver:0000 22 2 2.

An dternative is to cycle the last pulse to select the pathway Ap = -1,
giving the cycle 0 1 2 3 for the pulseand O 1 2 3 for the receiver. Once
again, this does not discriminate against z-magnetization which recovers
during the mixing time, so atwo step phase cycle to select axial peaks needs
to be added (see exercises).

4.2.7.2 Heteronuclear Experiments

The phase cycling for most heteronuclear experiments tends to be rather
trivial in that the usual requirement is simply to select that component which
has been transferred from one nucleus to another. We have aready seen in
section 4.2.3 that this simply boils down to a 0 2 phase cycle on a pulse
accompanied by the same on the receiver i.e. a difference experiment. The
choice of which pulse to cycle depends more on practical problems
associated with difference spectroscopy than with any fundamental
theoretical considerations.

HMQC: The pulse sequence for HMQC is given in Fig. 13, dong with a
coherence transfer pathway. We have written a separate pathway for the two
nuclear species, thus the heteronuclear multiple quantum coherence which
gives the sequence its name appears as a combination of p, = +1 and ps= £1.
Again, al symmetrical pathways are retained in order to give optimum
sensitivity and pure phase lineshapes.
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Figure 13. The pulse sequence and CTP for HMQC. Separate pathways are shown for the |
and Sspins.

The essential result we need to achieve in this sequence is to suppress the
signas arising from | spins which are not coupled to S spins. This is
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achieved by cycling the phase of a pulse which affects the phase of the
required coherence and which does not affect that of the unwanted
coherence. The obvious targets are the two S spin 90° pulses, each of which
isrequired to give the transformation Aps = +1. A two step cycle with either
of these pulses going O 2 and the receiver doing the same will select this
pathway and, by difference, suppress any | spin magnetization which has not
been passed into multiple quantum coherence.

It is also common to add EXORCY CLE phase cycling to the | spin 180°
pulse, giving a cycle with eight steps overall. Axial peaks should be
suppressed by the two step cycle of one of the S spin 90° pulses. Itis clear
that for heteronuclear experiments the coherence transfer pathway approach
is not really necessary.

4.2.8 Conclusions

We have seen that phase cycling is arelatively straightforward method of
selecting a particular coherence transfer pathway. Even at atheoretical level
the method sometimes fails when we are trying to select a complex pathway,
particularly one in which we are trying to select may parallel pathways (see
exercises); it may not be possible to write a phase cycle which selects the
required pathway.

In practice phase cycling suffers from two major problems. The first is
that the need to complete the cycle imposes a minimum time on the
experiment. In two- and higher-dimensional experiments this minimum
time can become excessively long, far longer than would be needed to
achieve the desired signal-to-noise ratio. In such cases the only way of
reducing the experiment time is to record fewer increments of the indirect
times which has the undesirable consequence of reducing the limiting
resolution in these dimensions.

The second problem is that phase cycling always relies on recording all
possible contributions and then cancelling out the unwanted ones by
combining subsequent signals. If the spectrum has high dynamic range, or if
spectrometer stability is a problem, this cancellation is less than perfect.
The result is unwanted signals appearing in the spectrum and t;-noise in
two-dimensional spectra. These problems become acute when dealing with
proton detected heteronuclear experiments on natural abundance samples, or
in trying to record spectra with intense solvent resonances.

Both of these problems are aleviated to a large extent by moving to an
aternative method of selection, the use of field gradient pulses which are the
subject of the next section. However, this alternative method is not without
itsown difficulties and it is by no means auniversal panacea.

Neither phase cycling nor field gradient pulses can discriminate between
z-magnetization and homonuclear zero-quantum coherence, both of which
have coherence order zero. There are methods which can be used to
suppress the contribution from zero-quantum coherence; these are all based
on the fact that this coherence acquires a phase during a delay or period of
spin-locking. There thus exists the possibility of cancellation or dephasing.
Further details can be found in section 4.3.7.1.
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4.3 Field Gradient Pulses

4.3.1 Introduction

Field gradient pulses can be used to select particular coherence transfer
pathways and, as we shall see, selection using gradients offers some
advantages when compared to selection using phase cycling. During a
pulsed field gradient the applied magnetic field is made deliberately spatially
inhomogeneous for a short time.  As a result, transverse magnetization and
other coherences dephase across the sample and are apparently lost.
However, this loss can be reversed by the application of a subsequent
gradient which wundoes the dephasing process thus restoring the
magnetization or coherence. The crucial property of the dephasing process
Is that it proceeds at a different rate for different coherences. For example,
double-quantum coherence dephases twice as fast as single-quantum
coherence. Thus, by applying gradient pulses of different strengths or
durations it is possible to refocus coherences which have, for example, been
changed from single- to double-quantum by a radiofrequency pulse.

Gradient pulses are introduced into the pulse sequence in such away that
only the wanted signals are observed in each experiment. Thus, in contrast
to phase cycling, there is no reliance on subtraction of unwanted signals, and
it can thus be expected that the level of t;-noise will be much reduced.
Again in contrast to phase cycling, no repetitions of the experiment are
needed, enabling the overall duration of the experiment to be set strictly in
accord with the required resolution and signal-to-noise ratio.

The properties of gradient pulses and the way in which they can be used
to select coherence transfer pathways have been known since the earliest
days of multiple-pulse NMR. However, their wide application in the past
has been limited by technical problems which made it difficult to use such
pulses in high-resolution NMR. The problem is that switching on the
gradient pulse induces currents in any nearby conductors, such as the probe
can and magnet bore tube. These induced currents, called eddy currents,
themselves generate magnetic fields which perturb the NMR spectrum.
Typically, the eddy currents are large enough to disrupt severely the
spectrum and can last many hundreds of milliseconds. It is thus impossible
to observe a high-resolution spectrum immediately after the application of a
gradient pulse. Similar problems have beset NMR imaging experiments and
have led to the development of shielded gradient coils which do not produce
significant magnetic fields outside the sample volume and thus minimise the
generation of eddy currents. The use of this technology in high-resolution
NMR probes has made it possible to observe spectra within tens of
microseconds of applying a gradient pulse. With such apparatus, the use of
field gradient pulses in high resolution NMR is quite straightforward, a fact
first redlised and demonstrated by Hurd whose work has pioneered this
whole area.
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4.3.2 Selection with Gradient Pulses

4.3.2.1 Dephasing Caused by Gradients

A field gradient pulse is a period during which the By field is made
spatially inhomogeneous, for example an extra coil can be introduced into
the sample probe and a current passed through the coil in order to produce a
field which varies linearly in the z-direction. We can imagine the sample
being divided into thin discs which, as a consequence of the gradient, all
experience different magnetic fields and thus have different Larmor
frequencies. At the beginning of the gradient pulse the vectors representing
transverse magnetization in all these discs are aligned, but after some time
each vector has precessed through a different angle because of the variation
in Larmor frequency. After sufficient time the vectors are disposed in such a
way that the net magnetization of the sample (obtained by adding together
al the vectors) is zero. The gradient pulse is said to have dephased the
magnetization.

It is most convenient to view this dephasing process as being due to the
generation by the gradient pulse of a spatially dependent phase. Suppose
that the magnetic field produced by the gradient pulse, By, varies linearly
along the z-axis according to

’ [9]

where G is the gradient strength expressed in, for example, Tor! or Glém—
1. the origin of the z-axis is taken to be in the centre of the sample. At any

particular position in the sample the Larmor frequency, «_(z), depends on
the applied magnetic field, By, and By

W = y(BO + Bg) = y(BO +GZ) [10]

where yis the gyromagnetic ratio. After the gradient has been applied for
time t, the phase at any position in the sample, @(z), is given by
d(2) = y(B0 + Gz)t . The first part of this phase is just that due to the usual

Larmor precession in the absence of afield gradient. Since thisis constant
across the sample it will be ignored from now on (which is formally the
same result as viewing the magnetization in a frame of reference rotating at
¥Bo). The remaining term yGzt is the spatially dependent phase induced by
the gradient pulse.

We imagine applying a gradient pulse to pure x-magnetization, giving the
following evolution at any particular position in the sample

L O cos(yGzt)lt sin(yGz)l, . [11]
The total x-magnetization in the sample, My, is found by adding up the

magnetization from each of the thin discs, which is equivalent to the integral
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Ermax

M, (t) = ri cos(yGzt)dz [12]

where it has been assumed that the sample extends over a region 3 rma.

Evaluating the integral gives an expression for the decay of x-magnetization
during agradient pulse

1
2s n(E y(-:’rmaxt)
"(Brmaxt

M, (t) = [13]
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Figure 14. The solid line shows the decay of magnetization due to the action of a gradient
pulse. The dashed lineis an approximation, valid at long times, for the envelope of the
decay.

Figure 14 shows a plot of M(t) as a function of time; the oscillations in the
decaying magnetization are imposed on an overall decay which for long
times is given by 2/(yGtrma). Equation [13] embodies the obvious points
that the stronger the gradient (the larger G) the faster the magnetization
decays and that magnetization from nuclei with higher gyromagnetic ratios
decays faster. It also allows a quantitative assessment of the gradient
strengths required: the magnetization will have decayed to afraction a of its

initial value after a time of the order of 2/ (yG armax) (the relation is strictly

valid for a << 1). For example, if it is assumed that rna 1S 1 cm, then a2
ms gradient pulse of strength 0.37 Tr?® (37 GI@m-1) will reduce proton
magnetization by a factor of 1000. Gradients of such strength are readily
obtainable using modern shielded gradient coils that can be built into high
resolution NMR probes

This discussion now needs to be generalised for the case of a field
gradient pulse whose amplitude is not constant in time, and for the case of
dephasing a genera coherence of order p. The former modification is of
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importance as for instrumental reasons the amplitude envelope of the
gradient is often shaped to a smooth function. In general after applying a
gradient pulse of duration 7 the spatialy dependent phase, &(r,7) is given
by

®(r,7) = YB,(1)T [14]

The proportionality to the coherence order comes about due to the fact that
the phase acquired as a result of a zrotation of a coherence of order p
through an angle @is pg, (see Egn. [1] in section 4.2.4.1). In Egn. [14] sis
a shape factor: if the envelope of the gradient pulse is defined by the
function A(t), where |A(t)| < 1, sis defined as the area under A(t)

s= % J’ A(t) ot
0 [15]

The shape factor takes a particular value for a certain shape of gradient,
regardless of its duration. A gradient applied in the opposite sense, that is
with the magnetic field decreasing as the z-coordinate increases rather than
vice versa, is described by reversing the sign of s. The overall amplitude of
the gradient is encoded within By.

In the case that the coherence involves more than one nuclear species,
Eqgn. [14] is modified to take account of the different gyromagnetic ratio for
each spin, ), and the (possibly) different order of coherence with respect to
each nuclear species, p;:

O(r,1) =sBy(NT ) PY; - [16]

From now on we take the dependence of @ on r and t, and of By on r as
being implicit, and will not write these explicitly.

4.3.2.2 Selection by Refocusing

The method by which a particular coherence transfer pathway is selected
using field gradientsisillustrated in Fig.15 (a).
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Figure 15 Pulse sequences and associated coherence transfer pathways illustrating
coherence selection using gradients. The radiofrequency pulses are given on the line
marked RF, solid rectangles indicate 90° pulses and open rectangles indicate 180° pulses;
the pulse phaseisx unless otherwise specified. Gradient pulses are indicated by the
rectangles on the line marked g.

The first gradient pulse encodes a spatialy dependent phase, @; and the
second a phase @, where

®, = SlplBg,1T1 and ®, =s,p, Bg,2T2 _ [17]

After the second gradient the net phase is (@, + @,). To select the pathway
involving transfer from coherence order p; to coherence order p,, this net
phase should be zero; in other words the dephasing induced by the first
gradient pulse is undone by the second. The condition (@, + @,) = 0 can be
rearranged to

%Bg,lrl B

Sz Bg,2T2 pl . [ 18]

For example, if p, = +2 and p, = — 1, refocusing can be achieved by making
the second gradient either twice aslong (7, = 2 17), or twice as strong (Bg» =
2 By1) as the first; this assumes that the two gradients have identical shape
factors. Other pathways remain dephased; for example, assuming that we
have chosen to make the second gradient twice as strong and the same
duration as the first, a pathway with p; = +3 to p, = —1 experiences a net
phase

P, +D, = 3SBg’lTl -, Bg’2r1 = ngJTl . [19]

Provided that this spatially dependent phase is sufficiently large, according
the criteria set out in the previous section, the coherence arising from this
pathway remains dephased and is not observed. To refocus a pathway in
which there is no sign change in the coherence orders, for example, py = -2
to p, = — 1, the second gradient needs to be applied in the opposite sense to
the first; in terms of Eqgn. [18] thisis expressed by having s, = —s;.
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The procedure can easily be extended to select a more complex coherence
transfer pathway by applying further gradient pulses as the coherence is
transferred by further pulses, asillustrated in Fig. 15 (b). The condition for
refocusing is again that the net phase acquired by the required pathway be
zero, which can be written formally as

BII_
Zsp. i) 201

With more than two gradients there are many ways in which a given
pathway can be selected. For example, the second gradient may be used to
refocus the first part of the required pathway, leaving the third and fourth to
refocus another part. Alternatively, the pathway may be consistently
dephased and the magnetization only refocused by the final gradient, just
before acquisition.

At this point it is useful to contrast the selection achieved using gradient
pulses with that achieved using phase cycling. From Eqgn. [18] it is clear
that a particular pair of gradient pulses selects a particular ratio of coherence
orders; in the above example any two coherence ordersin theratio -2 : 1 or
2 . — 1 will be refocused. This selection according to ratio is in contrast to
the case of phase cycling in which a phase cycle consisting of N steps of 21t
IN radians selects a particular change in coherence order Ap = p, — p1, and
further pathways which have Ap = (p2 — p1) £ MN, wherem=0, 1, 2 ...

It is straightforward to devise a series of gradient pulses which will select
a single coherence transfer pathway. It cannot be assumed, however, that
such a sequence of gradient pulses will reject al other pathways i.e. leave
coherence from all other pathways dephased at the end of the sequence.
Such assurance can only be given be analysing the fate of all other possible
coherence transfer pathways under the particular gradient sequence
proposed. In complex pulse sequences there may also be severa different
ways in which gradient pulses can be included in order to achieve selection
of the desired pathway. Assessing which of these alternativesis the best, in
the light of the requirement of suppression of unwanted pathways and the
effects of pulse imperfections may be a complex task.

In this section it has been shown that a single coherence transfer pathway
can be selected with the aid of gradient pulses. However, it is not unusual to
want to select two or more pathways simultaneously. A good example of
this is the double-quantum filter pulse sequence element shown in Fig. 16

@.
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% 7 v
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P2 -1 -1 _/_
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Figure 16 Pulse sequences and pathways for double-quantum filters.

The ideal pathway, shown in (a), preserves coherence orders p = + 2 during
the inter-pulse delay. It can be shown that the first 90° pulse generates equal
amounts of coherence orders + 2 and — 2, and these contribute equally to the
final observable signal. Gradients can be used to select the pathway — 2 to —
lor+2to—1, shownin (b) and (c) respectively. However, no combination
of gradients can be found which will select simultaneously both of these
pathways. In contrast, it is easy to devise a phase cycle which selects both
of these pathways (section 4.2.6.2). Thus, selection with gradients will in
this case result in aloss of half of the available signal when compared to an
experiment of equal length which uses selection by phase cycling. Such a
loss in signal is, unfortunately, a very common feature when gradients are
used for pathway selection.

Coherence order zero, comprising z-magnetization, zz terms and
homonuclear zero-quantum coherence, does not accrue any phase during a
gradient pulse. Thus it can be separated from all other orders simply by
applying a single gradient. In a sense, however, this is not a gradient
selection process; rather it is a simply suppression of all other coherences.
In contrast to experiments where selection is achieved, there is no inherent
sensitivity loss.

The simplest experimental arrangement generates a gradient in which the
magnetic field varies in the z direction, however it is aso possible to
generate gradients in which the field varies along x or y. Clearly, the
spatially dependent phase generated by a gradient applied in one direction
cannot be refocused by a gradient applied in a different direction. In
sequences where more than one pair of gradients are used, it may be
convenient to apply further gradients in different directions to the first pair,
so as to avoid the possibility of accidentally refocusing unwanted coherence
transfer pathways. Likewise, a gradient which is used to destroy al
magnetization and coherences can be applied in a different direction to
gradients subsequently used for pathway selection.

4.3.2.3 Spin Echoes

Refocusing pulses play an important role in multiple-pulse NMR
experiments and so the interaction between such pulses and field gradient
pulses will be explored in some detail. A perfect refocusing pulse achieves
two effects. Firstly, it changes the sign of the order of any coherences
present, p - —p. Secondly, zmagnetizationisinverted |, - —1,. A perfect
180° pulse, applied about any axis, is an example of such arefocusing pulse.
An imperfect refocusing pulse will cause transfers to other coherence orders
than — p, and may generate transverse magnetization from any z-
magnetization present. We start out the discussion by considering the
refocusing of coherences.
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Figure 17 Spin echoes and related sequences. In heteronuclear experiments the
radiofrequency pulses applied to the | and S spins are indicated on the lines so marked

The effect of an imperfect refocusing pulse can be considered by
factoring the sample into a part which experiences perfect refocusing and a
part which does not. The refocused part can be selected by placing a
gradient pulse on either side of the refocusing pulse, as shown in Fig. 17 (a).
The net phase at the end of such asequenceis

NG () -
®(2r) = QP8 +spyB,T + Q75 +5p'yB T [21]

where Q® is the frequency with which coherence of order p evolves in the
absence of a gradient; note that Q(—p) = — Q(p). This net phase is zero if,
and only if, p' = — p. With sufficiently strong gradients all other pathways
remain dephased and the gradient sequence has thus selected the perfectly
refocused component. In addition, any transverse magnetization created by
an imperfect refocusing pulse is also dephased. As is expected for a spin
echo, the underlying evolution of the coherence (as would occur in the
absence of a gradient) for the entire time 20 is a so refocused.

If arefocusing pulse is used in its second context, that of inversion of z
magnetization, the considerations are somewhat different. Formally, we
could regard the problem as selecting the pathway p=0 - p' =0, in which
case any combination of gradients would be suitable. However, in practice a
gradient combination should be used which gives the maximum dephasing
effect to other coherences. Assuming that the refocusing pulse still changes
the sign of the larger fraction of the coherences in the sample, the greatest
dephasing is obtained when the second gradient is applied in the opposite
sense to the first, asis shown in Fig. 17 (b).

In heteronuclear experiments a refocusing pulse is often used to remove
the effects of the heteronuclear coupling over a period. The role of such a

4-33



pulse when applied to spins Sis simply to invert the sign of any operator
products involving S; in other wordsto act as an inversion pulse for S. This
function is selected using the gradient sequence shown in Fig. 17 (c), which
in analogous to (b). Of course, any coherences on the spins | will be
dephased by the first gradient, but these coherences will be rephased by the
second gradient as it is applied in the opposite sense. The net effect is that
the | spin shift evolves for 29, but the IS coupling is refocused.

If arefocusing pulse is perfect, the inclusion of gradient pulses as shown
in Fig. 17 (@) - (c) does not reduce the size of the ultimately observed signal.
Thisisin contrast to most other situations in which selection with gradients
results in an inherent loss of signal. However, if the refocusing pulse is
imperfect there will be a loss of signa reflecting that part of the sample
which does not experience a perfect refocusing pulse.

4.3.2.4 PhaseErrors

In the selection process the spatially dependent phase created by a
gradient pulse is subsequently refocused by a second gradient pulse.
However, the underlying evolution due to chemical shifts (offsets) and
couplings is not refocused, and phase errors will accumulate due to the
evolution of these terms. Since gradient pulses are typically of a few
milliseconds duration, these phase errors are far from insignificant.

I t, t,
RE

g T,T
2
1

p
2

Figure 18. A DQF COSY sequence with gradient selection.
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In multi-dimensional NMR the uncompensated evolution of offsets
during gradient pulses has disastrous effects on the spectra. This is
illustrated here for the double-quantum filtered COSY pulse sequence using
the gradient pulses shown in Fig. 18. It will be assumed that only the
indicated pathway survives and so the spatially dependent part of the
evolution due to the gradients will be ignored. Thus, for atwo spin system,
coherence order of + 2 present during the filter evolves as follows during the
first gradient pulse

I, OB 20t 1, exp(-i(Qs Q,)r) [22]

where Q; and Q, are the offsets of spins 1 and 2, respectively. After the
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final 90° pulse and the second gradient the observable termson spin 1 are

‘Eexp(—i(Ql + Qz)Tl)[COSerz 2|1x|22 +SianT2 2|1y|22 [23]

where it has been assumed that 1, is sufficiently short that evolution of the
coupling can be ignored. It is clearly seen from Egn. [23] that, due to the
evolution during T, the multiplet observed in the F, dimension will be a
mixture of dispersion and absorption anti-phase contributions. In addition,
the exponential term gives an overall phase shift due to the evolution during
T1. The phase correction needed to restore this multiplet to absorption
depends on both the frequency in F, and the double-quantum frequency
during the first gradient. Thus, no single linear frequency dependent phase
correction could phase correct a spectrum containing many multiplets. The
need to control these phase errorsis plain.

The general way to minimise these problems is to associate each gradient
pulse with a refocusing pulse as shown in Fig. 17 (e) and (f). Using the
results from the previous section it is easily seen that sequence (€) generates
a net phase of spyByt; (f) gives the same result with a sign change. The
desired effect of refocusing the evolution due to the offset and not that due
to the gradient has been achieved. In sequence (f) the gradient is split into
two halves by the refocusing pulse, and in order to avoid the second gradient
refocusing the effect of the first, the two gradients have to be applied in
opposite senses. Of these two options (f) is the most time efficient as the
gradient is applied for the entire duration, whereas option (e) lengthens the
experiment by doubling the time needed for each gradient; if relaxation is
rapid, option (f) is the method of choice. Aswas explained in the previous
section, if the refocusing pulse is imperfect coherences undergoing transfers
other than the required p — — p should be dephased by (f). However,
sequence (e) will dephase the results of only some of these unwanted
coherence transfers.

In many pulse sequences there are periods during which the evolution of
offsets is refocused. The evolution of offsets during a gradient pulse placed
within such a period will therefore also be refocused, making it unnecessary
to include extra refocusing pulses. Likewise, a gradient may be placed
during a "constant time" evolution period of a multi-dimensional pulse
sequence without introducing phase errors in the corresponding dimension;
the gradient simply becomes part of the constant time period. This approach
is especially useful in the constant time three- and four-dimensional
experiments used to record spectra of nitrogen-15, carbon-13 labelled
proteins.

4.3.3 Lineshapesin Multi-Dimensional Spectra

The use of gradient pulses during the incremented time of a multi-
dimensional NMR experiment has profound effects on the lineshapes in the
resulting spectrum . To illustrate this we will discuss the ssimple COSY
experiment and restrict ourselves to a single spin with offset Q. The
principles remain the same for more complex experiments.
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Figure 19. Pulse sequences for COSY, with and without gradient selection.

Figure 19 (a) shows the basic COSY pulse sequence; asimple analysis of
this sequence for a one line spectrum gives the observed signal S (ty,t2) as

Sc(tl,tz) = cosQt, exp(— t,/ T2) exp(i Qtz)exp(— t, /T2) [24]

where T, is the (assumed) transverse relaxation time of the spin and
quadrature detection in t, is also assumed. The crucia feature of this signal
is that it is cosine modulated in t; and since cos(Qt;) = cos(—Qt;), the
modulation of the signal in t; is invariant to the sign of the offset, Q. Asa
result the spectrum is said to lack frequency discrimination in the F;
dimension. Since the receiver reference is normally placed in the middle of
the spectrum, resonances will have both positive and negative offsets, but
these are not distinguished in the F; dimension leading to a confused and
overlapped spectrum.

All methods of achieving frequency discrimination are based on
recording a separate signal, S, which is sine modulated in t;. In the COSY
experiment this signal is achieved simply by changing the phase of the first
pulse by 90°, giving

S(tt,) =sinQt exp(-t,/ T, ) expliat,Jexp(-t, /T,) - [25]

The way in which & and S are used to generate a frequency discriminated
spectrum is as follows. The real and imaginary parts of the Fourier
transform of this exponentially damped signal are lines with the absorption
and dispersion lorentzian lineshapes, denoted A(w) and D(w) respectively

F [exp(t iQtZ)eXp(—t2 /T, )] = A (a)) +iD, (w) [26]

D.(w)= (wFQ)T?

T, \wF Q)T
where A, («) 1+ (wF Q) T2 [27]

4-36



and F[S(t)] denotes the Fourier transform of St). Thus the transforms with
respect tot, of S and S are

S.(t)=F,[S(t,.t,)] = cosat, exp(~t, / T, { A (@) +iD, (,} [28]

St @)= F.[Si(tt,)] = sinat, exp(~t, 1 T, A () +iD, (w,} 129]

Thereal part of S(t1,a) is combined with i times the real part of Sy(t1,w,) to
yield the signal S(t;,w,) whose transform is the required spectrum

St w,) = RS, (t,, )] +i RIS (. @)

= exp(iQtl)exp(—t1 / Tz)A+ (wz) [30]

Sw.w)=F [ a)] ={A(a)+iD.(gf Al g

The rea pat of Swi,wy) is a spectrum with the favourable double
absorption lineshape, A.(wi)A+(wy). In addition, inspection of Eqgn. [30]
shows that the spectrum is frequency discriminated as the modulationinty is
sengitive to the sign of Q. This process of forming an absorption mode,
frequency discriminated spectrum is just that due to States, Haberkorn and
Ruben (SHR). A closely related process, knows as the Marion-Withrich or
TPPI method, achieves the same result by incrementing the phase of the first
pulse by 90° each time that t; isincremented. It can be shown that provided
the increment of t; is half that in the SHR method, an identical frequency
discriminated double absorption spectrum results.

There are two possible ways, shown in Fig. 19 (b), of using gradients in
the COSY sequence. Either coherence level + 1 is selected during tj,
leading to the echo or N-type spectrum, or level — 1 is selected leading to the
anti-echo or P-type spectrum. As has been pointed out, it is not possible to
select ssimultaneously both of these pathways. The time domain signals for
the P- and N-type pathways are

S (ty,t,) = %exp(iQtl)exp(—tl/TZ)exp(iQtZ)exp(—tz/TZ) [32]

SN (tl'tz) = %eXp(_ iQtl)eXp(_tl/Tz)eXp(iQtz)eXp(_ tz/Tz) [33]

In each case the resulting spectrum is expected to be frequency
discriminated due to the complex exponential modulation in t;; the factor of
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one half arises because the magnetization generated at the start of t; is an
equal mixture of coherence orders + 1 and — 1, only one of which is
refocused by the final field gradient. The use of gradient pulses has resulted
in frequency discrimination without any further data processing or without
the need to acquire further data sets with phase shifted pulses. Thisis a
consequence of selecting just one coherence level during t;. Double Fourier
transformation of S and S gives the spectra

So(w, @) =4{A (w)A(«@)-D.( 9)D.( &}
{A(@)D. (@) +D.(a)A(w) (34]

+
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Figure 20 Experimental spectra showing how P-type and an axis-reversed N-type spectrum,
each of which has the phase-twist lineshape, can be added together to give an absorption
mode spectrum.

In each case the real part of the spectrum has the phase-twist lineshape,
{Ai(wl)A+(wz)—Di(ag)D+(cg} , which is an inextricable mixture of
absorption and dispersion. This lineshape is very undesirable in high
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resolution NMR both because it is broad and because it has positive and
negative parts. Unless further steps are taken, applying a gradient during t;
will always result in a phase-twist lineshape.

When gradients have been applied during t; an absorption mode spectrum
can be recovered by repeating the experiment twice, once to give the P-type
and once to give the N-type spectrum. Figure 20 shows typical P- and N-
type spectra recorded using gradient pulse selection. If the F; axis of the N-
type spectrum is reversed the result is identical to the P-type spectrum
except that the dispersive part of the phase twist is in the opposite sense.
Adding the axis-reversed N-type and P-type spectra together cancels the
dispersive parts of the phase twist, leaving a peak with a double absorption
lineshape.

This process is conveniently carried out in the following way. The data
from the P- and N-type spectra are transformed with respect to t, to give

S+ () = 5 eXp0L) exp(—t, I T A (@) +iD, (@) [30

1 . ,
Su(t @) = S exp(-iQt ) exp(—t / LY A () +D. (@)} [37
These are combined to give the new signal S'(ty,«w,) according to

S'(t,,w,) =Sp(ty, @) + Sy (1, "

) [38]
= exp(thl) exp( -t / Tz) A, (&)2)

Taking the complex conjugate of the time domain signal is equivalent to
reversing the corresponding frequency axis in the frequency domain.
Finally, Fourier transformation with respect to t; yields, in the real part, the
required double absorption lineshape

S*(w, @) ={A (@) +iD, (W} A(w) . [39]

If the software available is not capable of the manipulations described
above, the cosine and sine modulated data sets needed for conventional SHR
type processing can be generated by manipulating the P- and N-type time
domain data in the following way. The P- and N-type data sets are stored
separately; adding them together produces a cosine modulated data set,
whereas subtracting them from one another produces a sine modulated data
set. These statements can be demonstrated by considering the sum and
difference of the functions S(t1,tz) and Sy(t,t) (Egns. [32] and [33]
respectively)  together with the wel known identities 2
cosO = exp(i6) + exp(—i ) and 2i sin@ = exp(i6) — exp(— 6).

In the presence of significant inhomogeneous broadening P- and N-type
spectra have different lineshapes. The most convenient way to understand
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this is to imagine that the sample is divided into small compartments, in
each of which the By field is sufficiently homogeneous that the natural
linewidth dominates. Each compartment contributes a phase-twist line to
the spectrum, at a frequency determined by the precise value of the By field
in that compartment. These phase-twist lines from different compartments
will overlap with one another and may cancel or reinforce, depending on
how they are distributed. In the N-type spectrum the phase-twists lines are
so arranged that they reinforce one another, giving, in the limit of a wide
distribution of frequencies, a largely positive ridge-like lineshape. In
contrast, in the P-type spectrum the phase-twists are aligned in such a way
that they cancel one another. In the limit of a wide distribution, the
cancellation is all but complete.

This strong asymmetry has led some to conclude that frequency
discrimination methods based on combining P- and N-type spectra would be
rendered ineffective by the presence of inhomogeneous broadening.
However, this view is mistaken as the following argument reveals. Each
compartment gives a P- and an N-type spectra with identical peak heights.
Thus, when the spectra are combined, these individual phase-twists add
together in precisely the way required, cancelling the dispersion
contributions. The observed spectrum is the sum of these individual spectra,
thus the dispersive contributions are removed from it as well.

4.3.4 Senditivity

The use of gradients for coherence selection has consequences for the
signal-to-noise ratio of the resulting spectrum when it is compared to a
similar spectrum recorded using phase cycling. Most of the differences
between the sensitivity of the gradient and phase cycled experiments come
about because a gradient is only capable of selecting one coherence order at
a particular point in the sequence. In contrast, it is often possible to select
more than one coherence order when phase cycling is used (see section
4.3.2.2).

If agradient is used to suppress all coherences other than p =0, i.e. it is
used simply to remove all coherences, leaving just z-magnetization or zz
terms, there is no inherent loss of sensitivity when compared to a
corresponding phase cycled experiment. If, however, the gradient is used to
select a particular order of coherence the signa which is subsequently
refocused will almost aways be haf the intensity of that which can be
observed in a phase cycled experiment. This factor comes about simply
because it is likely that the phase cycled experiment will be able to retain
two symmetrical pathways, whereas the gradient selection method will only
be able to refocuse one of these.

The foregoing discussion applies to the case of a selection gradient
placed in a fixed delay of a pulse sequence. The matter is quite different if
the gradient is placed within the incrementable time of a multi-dimensional
experiment, e.g. in t; of atwo-dimensional experiment. To understand the
effect that such a gradient has on the sensitivity of the experiment it is
necessary to be rather careful in making the comparison between the
gradient selected and phase cycled experiments. In the case of the latter
experiments we need to include the SHR or TPPI method in order to achieve
frequency discrimination with absorption mode lineshapes. If a gradient is
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used in t; we will need to record separate P- and N-type spectra so that they
can be recombined to give an absorption mode spectrum. We must aso
ensure that the two spectra we are comparing have the same limiting
resolution in the t; dimension, that is they achieve the same maximum value
of t; and, of course, the total experiment time must be the same. The
detailed argument which is needed to analyse this problem is beyond the
scope of this lecture; it is given in detail in J. Magn. Reson Ser. A, 111, 70-
76 (1994) (NB Thereis an error in this paper: in Fig. 1 (b) the penultimate S
spin 90° pulse should be phase y and the final S spin 90° pulse is not
required). The conclusion is that the signal-to-noise ratio of an absorption
mode spectrum generated by recombining P- and N-type gradient selected

spectra is lower, by 1/4/2 , than the corresponding phase cycled spectrum
with SHR or TPPI data processing.

The potentia reduction in sensitivity which results from selection with
gradients may be more than compensated for by an improvement in the
quality of the spectra obtained in this way. Often, the factor which limits
whether or not a cross peak can be seen is not the thermal noise level by the
presence of other kinds of "noise" associated with imperfect calcellation etc.

4.3.5 Diffusion

The process of refocusing a coherence which has been dephased by a
gradient pulse is inhibited if the spins move either during or between the
defocusing and refocusing gradients. Such movement aters the magnetic
field experienced by the spins so that the phase acquired during the
refocusing gradient is not exactly opposite to that acquired during the
defocusing gradient.

In liquids there is a trandational diffusion of both solute and solvent
which causes such movement at a rate which is fast enough to cause
significant effects on NMR experiments using gradient pulses. Asdiffusion
Is arandom process we expect to see a smooth attenuation of the intensity of
the refocused signal as the diffusion contribution increases. These effects
have been known and exploited to measure diffusion constants since the
very earliest days of NMR.
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Figure 21. (@) A spin echo sequence used to measure diffusion rates (see text); (b) and (c)
are alternative ways of implementing gradientsinto a COSY spectrum.

An anaysis of the simple spin echo sequence, shown in Fig. 21 (a),
illustrates very well the way in which diffusion affects refocusing. Note that
the two gradient pulses can be placed anywhere in the intervals 1 either side
of the 180° pulse. For a single uncoupled resonance, the intensity of the
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observed signal, S expressed as a fraction of the signal intensity in the
absence of agradient, § is given by

é = expﬁ— yszr2@ —%QD@ [40]

where D is the diffusion constant, A is the time between the start of the two
gradient pulses and T is the duration of the gradient pulses; relaxation has
been ignored. For a given pair of gradient pulses it is diffusion during the
interval between the two pulses, A, which determines the attenuation of the
echo. The gradients are used to label the magnetization with a spatially
dependent phase, and then to refocus it. The stronger the gradient the more
rapidly the phase varies across the sample and thus the more rapidly the
echo will be attenuated. This is the physical interpretation of the term
G*7% in Eqgn. [40].

Diffusion constants generally decrease as the molecular mass increases.
A small molecule, such as water, will diffuse up to twenty times faster than
a protein with molecular weight 20,000. Table 1 shows the loss in intensity
due to diffusion for typical gradient pulse pair of 2 ms duration and of
strength 10 GBm™ for a small, medium and large sized molecule; data is
givenfor A =2msand A =100 ms. It is seen that even for the most rapidly
diffusing molecules the loss of intensity is rather small for A = 2 ms, but
becomes significant for longer delays. For large molecules, the effect is
small inall cases.

Table| : Fraction of Transverse Magnetization Refocused
After a Spin Echo with Gradient Refocusing?

A/msP  small moleculec medium sized macro moleculee
mol ecul ed
2 0.99 1.00 1.00
100 0.55 0.88 0.97

a Caculated for the pulse sequence of Fig. 21 (a) for two gradients of
strength

10 G6m™ and duration, 7, 2 ms; relaxation isignored.

b Asdefined in Fig. 21 ().

¢ Diffusion constant, D, taken as that for water, whichis 2.1 x 10° m*s™ at
ambient temperatures.

d Diffusion constant taken as 0.46 x 10° m? s,
e Diffusion constant taken as 0.12 x 10° m? s,



4.3.5.1 Minimisation of Diffusion Losses

The foregoing discussion makes it clear that in order to minimise
intensity losses due to diffusion the product of the strength and durations of
the gradient pulses, G*7%, should be kept as small as is consistent with
achieving the required level of suppression. In addition, a gradient pulse
pair should be separated by the shortest time within the limits imposed by
the pulse sequence. This condition applies to gradient pairs the first of
which is responsible for dephasing, and the second for rephasing. Once the
coherence is rephased the time that elapses before further gradient pairs is
irrelevant from the point of view of diffusion losses.

In two-dimensional NMR diffusion can lead to line broadening in the F;
dimension if t; intervenes between a gradient pair. Consider the two
aternative pulse sequences for recording a ssimple N-type COSY spectrum
shown in Fig. 21 (b) and (c). In (b) the gradient pair are separated by the
very short time of the final pulse, thus keeping the diffusion induced |osses
to an absolute minimum. In (c) the two gradients are separated by the
incrementable time t;; as this increases the losses due to diffusion will also
increase resulting in an extra decay of the signal in t;. The extra line
broadening due to this decay can be estimated from Eqn. [40], with A = t3,
as YG’°DITtHz. For a pair of 2 ms gradients of strength 10 G@m™ this
amounts= 2 Hz in the case of a small molecule.

This effect by which diffusion causes an extra line broadening in the F;
dimension is usualy described as diffusion weighting. Generdly it is
possible to avoid this effect by careful placing of the gradients. For
example, the sequences in Fig. 21 (b) and (c) are in every other respect
equivalent, thus there is no reason not to chose (b). It should be emphasised
that diffusion weighting occurs only when t; intervenes between the
dephasing and refocusing gradients.

4.3.6 Some Examples of Experiments Using Gradients

4.3.6.1 General Remarks

Reference has already been made to the two general advantages of using
gradient pulses for coherence selection, namely the possibility of a general
improvement in the quality of spectra and the removal of the requirement of
completing a phase cycle for each increment of a multi-dimensional
experiment. In the case of recording spectra of proteins and similar
molecules a number of particular advantages can be expected. The first of
these relates to heteronuclear correlation experiments which form the heart
of many two- and higher-dimensional experiments. In such experiments
there is a need to suppress both the water resonance and the signals due to
protons not coupled to a heteronucleus (nitrogen-15 or carbon-13, typically);
selection with gradients will give improve greatly the suppression of both
these types of signals. Finally, we note that the dynamic range of the free
induction decay recorded after gradient selection will be much lower than in
an equivalent phase cycled experiment, alowing best use to be made of the
resolution of the digitiser.

As has been discussed above, special care needs to be taken in
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experiments which use gradient selection if absorption mode spectra are to
be obtained. For demanding applications where spectral resolution and
sensitivity is at a premium, it is vital to record absorption mode spectra
This is especialy the case in the indirectly detected domains of two- and
higher-dimensional spectra.

In the following sections the use of gradient selection in several different
experiments will be described. The gradient pulses used in these sequences
will be denoted Gi, G, etc. where G; implies a gradient of duration T,
strength By; and shape factor s. There is always the choice of altering the
duration, strength or, conceivably, shape factor in order to establish
refocusing. Thus, for brevity we shal from now on write the spatially
dependent phase produced by gradient G; acting on coherence of order p as
pG; in the homonuclear or Z v.p,G, in the heteronuclear case.

J

4.3.6.2 Double Quantum Filtered COSY
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Figure 22. Pulse sequence for recording absorption mode DQF COSY spectra.

The sequence of Fig. 22 is suitable for recording absorption mode DQF
COSY spectrum. Here, no gradient is applied during t;, thus retaining
symmetrical pathways and the phase errors which accumulate during the
double quantum period are refocused by an extra 180° pulse; the refocusing
condition is G, = 2 G;. Frequency discrimination in the F; dimension is
achieved by the SHR or TPPI procedures. Multiple quantum filters through
higher orders can be implemented in the same manner.

In this experiment data acquisition is started immediately after the final
radiofrequency pulse so as to avoid phase errors which would accumulate
during the second gradient pulse. Of course, the signal only rephases
towards the end of the final gradient, so there is little signal to be observed.
However, the crucia point is that, as the magnetization is al in antiphase at
the start of t,, the signal grows from zero at arate determined by the size the
couplings on the spectrum. Provided that the gradient pulse is much shorter
that 1/J, where J is a typical proton-proton coupling constant, the part of the
signal missed during the gradient pulse is not significant and the spectrum is
not perturbed. Acquiring the data in this way avoids the need for an extra
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180° pulse to refocus the phase errors that would accumulate during the
second gradient. If it is more convenient, an aternative procedure is to start
to acquire the data after the final gradient, and then to right shift the free
induction decay, bringing in zeroes from the left, by a time equa to the
duration of the gradient.



4.3.6.3 Two-Dimensional HMQC
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Figure 23. Pulse sequence for recording absorption mode HMQC spectra. The CTP for the
N-type spectrum is shown as a solid line and that for the P-type spectrum is shown dashed.

There are several ways of implementing gradient selection into the
HMQC experiment, one of which, which leads to absorption mode spectra,
isshown in Fig. 23. The centrally placed | spin 180° pulse results in no net
dephasing of the | spin part of the heteronuclear multiple quantum
coherence by the two gradients G; i.e. the dephasing of the | spin coherence
caused by the first is undone by the second. However, the S spin coherence
experiences a net dephasing due to these two gradients and this coherence is
subsequently refocused by Go. Two 180° S spin pulses together with the

delays 1; refocus shift evolution during the two gradients G;. The centrally
placed 180° | spin pulse refocuses chemical shift evolution of the | spins
during the delays A and al of the gradient pulses (the last gradient is
contained within the final delay, 4). The refocusing conditionis

+2y G, -y,G, =0 [41]

where the + and — signs refer to the P- and N-type spectra respectively. The
switch between recording these two types of spectra is made simply by
reversing the sense of G,. The P- and N-type spectra are recorded separately
and then combined in the manner described in section 4.3.3 to give a
frequency discriminated absorption mode spectrum.

In the case that | and S are proton and carbon-13 respectively, the
gradients G and Go are in the ratio 2 : + 1. Proton magnetization not
involved in heteronuclear multiple quantum coherence, i.e. magnetization
from protons not coupled to carbon-13, is refocused after the second
gradient G4 but is then dephased by the final gradient G,. Provided that the
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gradient is strong enough these unwanted signal's, and the t;-noise associated
with them, will be suppressed.



4.3.6.4 Two-Dimensional HSQC
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Figure 24. Pulse sequences for recording absorption mode HSQC spectra: (a) is the usual
sequence, see text for a description of the significance of point a; (b) gives P- or N-type
spectra which can be recombined to give an absorption mode spectrum.

The basic pulse sequence for the HSQC experiment is shown in Fig. 24
(@). For a coupled two spin system the transfer can be described as
proceeding via the spin ordered state 21,S, which exists at point a in the
sequence. In the absence of significant relaxation magnetization from
uncoupled | spinsis present at this point as ly. Thus, afield gradient applied
at point a will dephase the unwanted magnetization and leave the wanted
term unaffected. The main practical difficulty with this approach is that the
uncoupled magnetization is only along y at point a provided all of the pulses
are perfect; if the pulses are imperfect there will be some z magnetization
present which will not be eliminated by the gradient. In the case of
observing proton - carbon-13 or proton - nitrogen-15 HSQC spectra from
natural abundance samples, the magnetization from uncoupled protons is
very much larger than the wanted magnetization, so even very small
imperfections in the pulses can give rise to unacceptably large residual
signals. However, for globally labelled samples the degree of suppression
has been shown to be sufficient, especially if some minimal phase cycling or
other procedures are used in addition. Indeed, such an approach has been
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used successfully as part of a number of three- and four-dimensional
experiments applied to globally carbon-13 and nitrogen-15 labelled proteins
(videinfra).

The key to obtaining the best suppression of the uncoupled magnetization
Isto apply a gradient when transverse magnetization is present on the Sspin.
An example of the HSQC experiment utilising such a principle is given in
Fig. 24 (b). Here, G; dephases the S spin magnetization present at the end of
t1, and after transfer to the | spins, refocusing is effected by G,. An extra
180° pulse to S in conjunction with the extra delay 7; ensures that phase
errors which accumulate during G; are refocused; G, is contained within an
existing spin echo. The refocusing condition is

+YsG, -v,G, =0 [42]

where the — and + signs refer to the N- and P-type spectra respectively. As
before, an absorption mode spectrum is obtained by combining the N- and
P-type spectra, which can be selected simply by reversing the sense of Go.

The basic HMQC and HSQC sequences can be extended to give two- and
three-dimensional experiments such as HMQC-NOESY and HMQC-
TOCSY. The HSQC experiment is often used as a basic element in other
two-dimensional experiments. For example, in proteins the proton -
nitrogen-15 NOE is usualy measured by recording a two-dimensional
spectrum using a pulse sequence in which native nitrogen-15 magnetization
Is transferred to proton for observation. The difference between two such
spectra recorded with and without pre-saturation of the entire proton
spectrum reveals the NOE. Suppression of the water resonance in the
control spectrum causes considerable difficulties, which are conveniently
overcome by use of gradient pulsesfor selection.

4.3.6.5 Sensitivity Enhanced HSQC
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Figure 25. Pulse sequence for recoording sensitivity-enhanced HSQC spectra. Inits
original form the sequence is used without the gradients, the delays 7; and 7, and the 180°
pulses shown dashed. In the Kay modification these optional elements are included; see
text for discussion. The phase @is +x.

The pulse sequence of Fig 25. is a modification of the basic HSQC
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sequence which, when compared to that sequence, gives a signal-to-noise

ratio which is higher by a factor of J2. The sequence achieves this by
transferring to the | spins both the x and the y components of the S spin
magnetization present at the end of t;. The conventional HSQC experiment
only transfers one of these components and so results in a weaker signal
overall.

The way in which this sequence works can be determined by a quick
analysis using product operators, we shall assume that the delay A is set to
1/(4J). At the end of t; the x component of the magnetization, 21,S,, is
transferred by the first pair of 90° pulses to heteronuclear multiple quantum,
21yS.. The subsequent spin echo refocuses this term and then the next pair
of 90° pulses transfers the coherence to anti-phase on the | spins: 21,S,. This
anti-phase term evolves into in-phase along x, lx, during the final spin echo.
The fina pulse has no effect on this state. Thus the x component is
transferred from Sto |.

At the end of t; the y component of the magnetization, 21,5, is
transferred by the first pair of 90° pulses to the anti-phase state, 21,S,. This
re-phases during the subsequent spin echo to the in-phase state Ix. The next
90° pulse to | rotates this to I, where it remains for the rest of the sequence
until the final 1 spin 90° pulse which turns it to the observable, |,. Note that
the x-component is transferred to |, and the y-component to |y i.e. thereis a
90° phase shift in the observed signal .

If one component (for example the x-component) present at the end of t;
is transferred the resulting modulation in t; is one of amplitude, for example
varying as cos(Q4;). The perpendicular component (y) will aso be
amplitude modulated, but asit is 90° out of phase with the x-component the
modulation is of the form sin(Q4;). In the sensitivity-enhanced experiment
both of these components are transferred, and what is more the transferred
signals appear along perpendicular axes. The overal result of thisisthat the
observed signal is phase modulated with respect to t;. Formally the
observed signal varies as cos(Qd;) + i sSin(Qd1) = exp(iQdty), where the
complex i in the combination accounts for the phase shift between the two
observed signals.

The first S spin 90° pulse after t; does not affect the x component of the
magnetization, but does affect the y-component. If the phase of this pulseis
atered from x to —x, therefore, the sign of the transferred y-component will
be atered whereas the transferred x-component is unaffected. Thus, by
changing the phase of this pulse the observed modulation can be altered to
cos(Qsgt1) — i SIN(Qst1) = exp(— Qsty).

In effect the experiment alows us to record phase modulated data and to
choose if the phase modulation is of the form that will lead to a P-type
spectrum or an N-type spectrum. These two spectra can be combined
together in precisely the manner described in section 4.3.3 to give an
absorption mode spectrum; this is essentially the data processing proposed
for this sengitivity-enhanced experiment.

If we consider the coherence transfer pathway brought about by this
sensitivity-enhanced sequence we conclude that, as the data is phase
modulated, a single coherence order must have been selected in during t;. If
the phase of the S spin pulse is chose such that P-type data is obtained then
we conclude that the coherence order selected in t; is —1 whereas if N-type
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data is obtained the coherence order selected is +1. We could add gradient
pulses to select either of these two pathways; suitable modifications are
shown in the sequence shown in Fig. 25. The relative sense of the two
gradients will determine which of the P- or N-type modulation is selected.

The key point is, then, that as the original experiment selects inherently
just one out of the two pathways the addition of gradient selection, which
can only select one pathway at a time, will not result in any loss of signal.
Thus, the sensitivity-enhanced experiment with gradient selection gives, in
theory, identical signal-to-noise ratio as obtained without gradients. Thisis
a rather unusual as, as we have seen, coherence selection with gradients
usually leadsto alossin signal.

The detailed argument concerning the sensitivity of these experiments
can be found elsewhere (see section 4.3.4 and reference quoted there). In
summary we conclude that the sensitivity-enhanced experiment, with or
without gradients, has a signal-to-noise ratio which is greater by a factor of

V2 than that of the equivalent phase cycled experiment. Compared to a
gradient experiment in which separate P- and N-type spectra are recorded
the signal-to-noise ratio is enhanced by afactor of 2.

The sequence of pulses used to transfer both the components of
magnetization can be added to many heteronuclear experiments, thus giving
the benefits of both improved sensitivity and, if required, gradient selection.
The resulting sequences are, however, considerably longer than the originals
so there is the possibility that the potential sensitivity gain will be reduced as
a consequence of losing signal due to relaxation.

4.3.6.6 Three-Dimensional HN(CO)CA
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Figure 26. An HN(CO)CA experiment with gradients.

Figure 26 shows a pulse sequence used by Bax and Pochapsky to record
constant time three-dimensional HN(CO)CA spectra of globally labelled
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proteins.t3 In this sequence, gradients are used in several different roles.
The gradient G; is used to dephase magnetization from protons not coupled
to nitrogen-15, as was described above in connection with the HSQC
experiment (section 4.3.6.4 and Fig. 24 (a)). As was described above, this
kind of gradient selection fails in the presence of pulse imperfections.
However, in this case the use of a period of spin locking prior to the second
proton 90° pulse, combined with the fact that the sample is globally labelled
in both nitrogen-15 and carbon-13, results in a degree of suppression that is
more than adequate. The two gradients G, combine to select only that
magnetization which has been refocused by the second 180° nitrogen pulse.
Likewise the two gradients Gs select magnetization which is correctly
refocused by the 180° pulse to the carbonyl carbons placed in the centre of
to. In addition, these gradients dephase any nitrogen magnetization present.
The two gradients G, serve to eliminate any magnetization which is created
by the second to last proton 180° pulse, and the final pair of gradients Gs,
like G, and Gg, select the proton magnetization which is correctly refocused
by the final proton 180° pulse. These uses of gradient pulses in conjunction
with different types of spin echoes have been described in the section above.
The polarity of the various gradient pulses is chosen so as to maximise the
dephasing of uncoupled proton magnetization, and hence give the best
suppression.

The most important feature of this pulse sequence is that the gradients are
applied either when the required magnetization is along z or as part of
refocusing schemes using 180° pulses. Thus, in contrast with all of the
experiments described in this section, there is no loss of signal associated
with the use of gradients. In addition, as no gradients are associated with the
evolution times, absorption mode spectra are obtained without further
manipulation of the data.

4.3.6.7 Four-Dimensional HCANNH

Boucher et al. have described a four-dimensional HCANNH experiment,
used for recording spectra of globally nitrogen-15, carbon-13 labelled
proteins, which combines gradient selection with limited phase cycling. The
sequence is shown in Fig. 27. A single pair of gradientsis used to select the
final nitrogen to proton transfer step and a two step phase cycle of the first
90° pulse to C, is used to select the transfer from C, to N. A period of spin
locking of the proton signal just prior to the first transfer to C, is used to
improve the water suppression. The *C, and °N shifts are monitored
during constant time periods, and the gradient G; is included in the second
of these. As has been described above, placing a gradient in a constant time
period does not give rise to any extra phase errors due to the evolution of
offsets during the gradient. The refocusing gradient G, is placed within an
existing spin echo. The refocusing condition is

+y\ G - ¥4G, =0, [43]
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Figure 27. The HCANNH experiment with one step of gradient selection.

where YN and yH are the gyromagnetic ratios of nitrogen-15 and proton
respectively; the change between P- and N-type data is made simply by
reversing the sense of one of the gradients. Absorption mode spectrain the
F, and F, domains are obtained using the SHR-TPPI method. Separate P-
and N-type data sets are recorded and then combined in the manner
described above so as to give absorption mode lineshapes in F;. The

experiment thus shows a signal-to-noise ratio which is +/2 poorer than an
equivalent phase cycled experiment.

4.3.7 Zero-Quantum Dephasing and Purge Pulses

Both z-magnetization and homonuclear zero-quantum coherence have
coherence order 0, and thus neither are dephased by the application of a
gradient pulse. Selection of coherence order zero is achieved simply by
applying a gradient pulse which is long enough to dephase all other
coherences; no refocusing is used. In the vast majority of experimentsit is
the z-magnetization which is required and the zero-quantum coherence that
Is selected at the same time is something of a nuisance.

A number of methods have been developed to suppress contributions to
the spectrum from zero-quantum coherence. Most of these utilise the
property that zero-quantum coherence evolves in time, whereas z-
magnetization does not. Thus if several experiments in which the zero-
guantum has been alowed to evolve for different times are co-added,
cancellation of zero-quantum contributions to the spectrum will occur. Like
phase cycling, such a method is time consuming and relies on a difference
procedure; it is thus subject to the same criticisms as can be levelled at
phase cycling. However, it has been shown that if a field gradient is
combined with a period of spin-locking the coherences which give rise to
these zero-quantum coherences can be dephased. Such a process is
conveniently considered as a modified purging pulse.
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4.3.7.1 Purging Pulses

A purging pulse consists of arelatively long period of spin-locking, taken
here to be applied along the x-axis. Magnetization not aligned along x will
precess about the spin-locking field and, because this field is inevitably
inhomogeneous, such magnetization will dephase. The effect is thus to
purge all magnetization except that aligned along x. However, in a coupled
spin system certain anti-phase states aligned perpendicular to the spin-lock
axis are also preserved. For a two spin system (with spins k and 1), the
operators preserved under spin-locking are Iy, lix and the anti-phase state
211, =2l,l,,. Thus, in a coupled spin system, the purging effect of the

spin-locking pulseisless than perfect.

The reason why these anti-phase terms are preserved can best be seen by
transforming to a tilted co-ordinate system whose z-axis is aligned with the
effective field seen by each spin. For the case of a strong B; field placed
close to resonance the effective field seen by each spin is along x, and so the
operators are transformed to the tilted frame simply by rotating them by —
90° about y

=51 T wt/ Ol T
IkXDI]]]]?/Z AN nxmmﬂf/zl M [44]

21,1, - 21 1, O™ 21T 21717 [45]

Operators in the tilted frame are denoted with a superscript T. In this frame
the x-magnetization has become z, and as this is parallel with the effective
field, it clearly does not dephase. The anti-phase magnetization along y has

become 211, =21, which is recognised as zero-quantum coherencein

the tilted frame. Like zero-quantum coherence in the normal frame, this
coherence does not dephase in a strong spin-locking field. There is thus a
connection between the inability of afield gradient to dephase zero-quantum
coherence and the preservation of certain anti-phase terms during a purging
pulse.

Zero-quantum coherence in the tilted frame evolves with time at a
T

frequency, Q;,, given by

L, = (@2 +af) - (@7 +af) [46]

where Q is the offset from the transmitter of spin i and wj is the B, field
strength. If a field gradient is applied during the spin-locking period the
zero quantum frequency is modified to

QL () =@ + 1B, +@) - @ +B() +@?| . [47]
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This frequency can, under certain circumstances, become spatialy
dependent and thus the zero-quantum coherence in the tilted frame will
dephase. Thisis in contrast to the case of zero-quantum coherence in the
laboratory frame which is not dephased by a gradient pul se.

The principles of this dephasing procedure are discussed in detail
elsewhere (J. Magn. Reson. Ser. A 105, 167-183 (1993) ). Here, we note the
following features. (@) The optimum dephasing is obtained when the extra

offset induced by the gradient at the edges of the sample, yBg(rmax), is of the
order of ay. (b) The rate of dephasing is proportional to the zero-quantum
frequency in the absence of a gradient, Qg — Q. (c) The gradient must be
switched on and off adiabatically. (d) The zero-quantum coherences may
also be dephased using the inherent inhomogeneity of the radio-frequency
field produced by typical NMR probes, but in such a case the optimum
dephasing rate is obtained by spin locking off-resonance so that tan—!
w/Q) = 54°. (e) Dephasing in an inhomogeneous B; field can be
accelerated by the use of special composite pul se sequences.

DN
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Figure 28 Pulse sequences employing zero-quantum dephasing by a combination of spin-
locking and a By gradient pulse: (a) for TOCSY and (b) for NOESY.

The combination of spin-locking with a gradient pulse alows the
implementation of essentially perfect purging pulses. Such a pulse could be
used in a two-dimensional TOCSY experiment whose pulse sequence is
shown in Fig. 28 (@). The period of isotropic mixing transfers in-phase
magnetization (say along x) between coupled spins, giving rise to cross-
peaks which are absorptive and in-phase in both dimensions. However, the
mixing sequence also both transfers and generates anti-phase magnetization
along y, which gives rise to undesirable dispersive anti-phase contributions
in the spectrum. In the sequence of Fig. 24 (@) these anti-phase
contributions are eliminated by the use of a purging pulse as described here.
Of course, at the same time all magnetization other than x is aso eliminated,
giving a near perfect TOCSY spectrum without the need for phase cycling or
other difference measures.
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These purging pulses can be used to generate pure z-magnetization
without contamination from zero-quantum coherence by following them
with a 90°(y) pulse, as is shown in the NOESY sequence in Fig. 28 (b).
Zero-quantum coherences present during the mixing time of a NOESY
experiment give rise to troublesome dispersive contributions in the spectra,
which can be eliminated by the use of this sequence.

4.3.8 Conclusions

Pulsed-field gradients appear to offer a solution to many of the
difficulties associated with phase cycling, in particular they promise higher
quality spectra and the freedom to chose the experiment time solely on the
basis of the required resolution and sensitivity are attractive features.
However, these improvements are not unconditional. When gradient
selection is used, attention has to be paid to their effect on sensitivity and
lineshapes, and dealing with these issues usually results in a more complex
pulse sequence. Indeed it seems that the potential loss in sensitivity when
using gradient selection is the most serious drawback of such experiments.
Nevertheless, in a significant number of cases the potential gains, seenin the
broadest sense, seem to outweigh the losses.

4.4 Key References

Coherence Order, Coherence Transfer Pathways and Phase Cycling

G. Bodenhausen, H. Kogler and R. R. Erngt, J. Magn. Reson. 58, 370
(1984).

A. D. Bain, J. Magn. Reson. 56, 418 (1984).

R. R. Erngt, G. Bodenhausen and A. Wokaun, Principles of Nuclear
Magnetic Resonance in One and Two Dimensions (Oxford
University Press, Oxford, 1987).

J. Keeler, Multinuclear Magnetic Resonance in Liquids and Solids -
Chemical Applications edited by P. Granger and R. K. Harris
(Kluwer, Dordrecht, 1990)

Phase Sensitive Two-Dimensional NMR

J. Keeler and D. Neuhaus, J. Magn. Reson. 63, 454-472 (1985).

D. J. States, R. A. Haberkorn and D. J. Ruben, J. Magn. Reson. 48,
286 (1982).

D. Marion and K. Withrich, Biochem. Biophys. Res. Commun. 113,
967 (1983).

Sengitivity of Two-Dimensional NMR

M. H. Levitt, G. Bodenhausen and R. R. Erngt, J. Magn. Reson. 58,

462 (1984).
Original Gradient Experiments

A. A. Mauddley, A. Wokaun and R. R. Ernst, Chem. Phys. Lett. 55, 9-
14 (1978).

4-57



R. E. Hurd, J. Magn. Reson. 87, 422-428 (1990).
Review of Gradient Methods (September 1993)
J. Kedler in Methods in Enzymology, Volume 239 part C, edited by T.
L. James and N. J. Oppenheimer. Academic Press, San Diego,
1994.
Sensitivity-Enhanced Methods
J. Cavanagh and M. Rance, J. Magn. Reson. 88, 72-85 (1990).
A. G. Pamer 1Il, J. Cavanagh, P. E. Wright and M. Rance, J. Magn.
Reson. 93, 151-170 (1991).

L. E. Kay, P. Keifer and T. Saarinen, J. Am. Chem. Soc. 114, 10663-
10665 (1992).

4-58



	0-introduction
	1-quant_letter
	2-prodop_a4
	3-2d_a4
	4-phasen_a4

