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0. Introduction to lectures 1–4
Please read this introduction before the start of the summer school.

It would also be very helpful if you would read through and
familiarize yourself with the contents of section 1.1 (Lecture 1)
before the start of the lectures.

0.1 General outline
These written notes which accompany the lectures are quite detailed and
comprehensive.  In the lectures, there will not be time to go over all the
topics which are described in the notes.  Rather, we will go slowly through
the key ideas and the most important points.  Later, after the summer
school, you may wish to study the notes in greater detail and look at those
parts we will not have time to go through.

The lectures will follow the notes closely and I recommend most strongly
that during the lectures you do not take any notes, but listen and follow the
presentation.  The lecture notes provided here are so comprehensive that
you will not really miss anything by not taking notes.

There will be exercise classes following the lectures, and I hope that by
working through the problems you will deepen your understanding.  Again,
there may not be time to work through all the exercises.

0.2 Scheme of the lectures
Lecture 2 Product Operators will be given first.  It sets out a
straightforward theory which is well suited to analysing multiple-pulse NMR
experiments, and which will be used in the other lectures.  Although this
theory has a sound base in quantum mechanics, it is quite easy to use as
much of it can be interpreted geometrically.

Lecture 3 Basic concepts for two-dimensional NMR will be given
next.  In this lecture, the key ideas behind two-dimensional NMR will be
introduced, and several important experiments will be analysed using the
product operator approach introduced in lecture 1.

Lecture 1 Introduction to quantum mechanics introduces the theory
which is used to describe NMR experiments and from which the product
operator approach is developed.  All of the basic ideas in quantum
mechanics are introduced, but these are developed in relation to NMR rather
than using the examples most commonly found in books about elementary
quantum mechanics.

Finally, Lecture 4 Coherence selection: phase cycling and gradient
pulses describes a very practical part of multiple-pulse NMR, which is how
to select the signals we want and reject those we do not.  Two methods –
phase cycling and gradient pulses – are described in theory and many
examples will be given of how to devise and analyse coherence selection
schemes.
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0.3 General matters
Lectures 1 and 2 have been prepared specially for this summer school.  The
first half of Lecture 3 is based in part of a third-year undergraduate course
NMR Spectroscopy which I gave in Cambridge in association with
Dr Melinda Duer; I thank her for invaluable advice and assistance .  Lecture
4 was prepared for the EMBO sponsored course held in Turin, Italy, in
1995.  The section on phase cycling was based in part on a lecture given at a
NATO ASI Workshop in Italy in 1990.  The section on field gradient pulses
is based on an article published in Methods in Enzymology volume 239C
(1994) which I co-authored with Robin Clowes, Adrian Davis and Ernest
Laue.  I thank the organisers of this and other meetings for the opportunity
to prepare and present this material.

You are welcome to make copies of these lecture notes for your own use,
and to supply copies to colleagues, provided that due acknowledgement of
their origin is given.  If you wish to make large numbers of copies, I would
appreciate being consulted first.

James Keeler Cambridge 1998

University of Cambridge,
Department of Chemistry
Lensfield Rd
Cambridge, CB2 1EW
U.K.
EMAIL: James.Keeler@ch.cam.ac.uk



1–1

1 Introduction to quantum mechanics

Quantum mechanics is the basic tool needed to describe, understand and devise
NMR experiments.  Fortunately for NMR spectroscopists, the quantum
mechanics of nuclear spins is quite straightforward and many useful
calculations can be done by hand, quite literally "on the back of an envelope".
This simplicity comes about from the fact that although there are a very large
number of molecules in an NMR sample they are interacting very weakly with
one another.  Therefore, it is usually adequate to think about only one molecule
at a time.  Even in one molecule, the number of spins which are interacting
significantly with one another (i.e. are coupled) is relatively small, so the
number of possible quantum states is quite limited.

The discussion will begin with revision of some mathematical concepts
frequently encountered in quantum mechanics and NMR.
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1.1.1 Complex numbers

An ordinary number can be thought of as a point on a line which extends from
minus infinity through zero to plus infinity.  A complex number can be thought
of as a point in a plane; the x-coordinate of the point is the real part of the
complex number and the y-coordinate is the imaginary part.

If the real part is a and the imaginary part is b, the complex number is

written as (a + ib) where i is the square root of –1.  The idea that − 1  (or in
general the square root of any negative number) might have a "meaning" is one
of the origins of complex numbers, but it will be seen that they have many more
uses than simply expressing the square root of a negative number.

i appears often and it is important to get used to its properties:
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The square magnitude of a complex number C is denoted C 2  and is found

by multiplying C by its complex conjugate; C 2  is always real
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These various properties are used when manipulating complex numbers:
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Using these relationships it is possible to show that

( ) ( )C D E C D E× × × = × × ×K K* * * *

The position of a number in the complex plane can also be indicated by the
distance, r, of the point from the origin and the angle, θ, between the real axis
and the vector joining the origin to the point (see opposite).  By simple
geometry it follows that

( )[ ] ( )[ ]Re Im

cos sin

a ib a a ib b

r r

+ = + =
= =θ θ

[1.1]

Where Re and Im mean "take the real part" and "take the imaginary part",
respectively.

In this representation the square amplitude is
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a distance, r, and an angle, θ.
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where the identity cos2θ + sin2θ  = 1 has been used.

1.1.2 Exponentials and complex exponentials

The exponential function, ex or exp(x), is defined as the power series

( )exp ! ! !x x x x= + + + +1 1
2

2 1
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The number e is the base of natural logarithms, so that ln(e) = 1.
Exponentials have the following properties
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The complex exponential is also defined in terms of a power series:
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By comparing this series expansion with those for sinθ and cosθ it can easily
be shown that

( )exp cos sini iθ θ θ= + [1.2]

This is a very important relation which will be used frequently.  For negative
exponents there is a similar result

( ) ( ) ( )exp cos sin

cos sin

− = − + −
= −

i i

i

θ θ θ
θ θ

[1.3]

where the identities ( )cos cos− =θ θ  and ( )sin sin− = −θ θ  have been used.

By comparison of Eqns. [1.1] and [1.2] it can be seen that the complex
number (a + ib) can be written

( ) ( )a ib r i+ = exp θ

where r = a2 + b2 and tanθ = (b/a).
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In the complex exponential form, the complex conjugate is found by
changing the sign of the term in i
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Multiplication and division of complex numbers in the (r,θ) format is
straightforward
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1.1.2.1 Relation to trigonometric functions

Starting from the relation

( )exp cos sini iθ θ θ= +

it follows that, as cos(–θ) = cosθ and sin(–θ) = – sinθ,

( )exp cos sin− = −i iθ θ θ

From these two relationships the following can easily be shown
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1.1.3 Circular motion

In NMR basic form of motion is for magnetization to precess about a magnetic
field.  Viewed looking down the magnetic field, the tip of the magnetization
vector describes a circular path.  It turns out that complex exponentials are a
very convenient and natural way of describing such motion.

Consider a point p moving in the xy-plane in a circular path, radius r, centred
at the origin.  The position of the particle can be expressed in terms of the
distance r and an angle θ: The x–component is r ⋅ cosθ and the y-component is r
⋅ sinθ.  The analogy with complex numbers is very compelling (see section
1.1.1); if the x- and y-axes are treated as the real and imaginary parts, then the
position can be specified as the complex number r ⋅ exp(iθ).

In this complex notation the angle θ is called the phase.  Points with
different angles θ are said to have different phases and the difference between
the two angles is called the phase difference or phase shift between the two
points.

If the point is moving around the circular path with a constant speed then the
phase becomes a function of time.  In fact for a constant speed, θ is simply
proportional to time, and the constant of proportion is the angular speed (or
frequency) ω

θ = ω t

where θ is in radians, t is in seconds and ω is in radians s–1.  Sometimes it is
convenient to work in Hz (that is, revolutions per second) rather than rad⋅s–1;
the frequency in Hz, ν, is related to ω  by ω = 2 πν.

The position of the point can now be expressed as r exp(iωt), an expression
which occurs very frequently in the mathematical description of NMR.
Recalling that exp(iθ) can be thought of as a phase, it is seen that there is a
strong connection between phase and frequency.  For example, a phase shift of
θ = ωt will come about due to precession at frequency ω for time t.

Rotation of the point p in the opposite sense is simply represented by
changing the sign of ω: r exp(–iωt).  Suppose that there are two particles, p and
p', one rotating at +ω and the other at –ω; assuming that they both start on the x-
axis, their motion can be described by exp(+iωt) and exp(–iωt) respectively.
Thus, the x- and y-components are:

x y

p t t

p t t

- comp. - comp.

cos sin

’ cos sin

ω ω
ω ω−

It is clear that the x-components add, and the y-components cancel.  All that is

x

y

r
p

A point p moving on a circular
path in the xy-plane.

x

y
p

p’

The x-components of two
counter-rotating points add, but
the y-components cancel.  The
resultant simply oscillates along
the x-axis.
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left is a component along the x-axis which is oscillating back and forth at
frequency ω.  In the complex notation this result is easy to see as by Eqns. [1.2]
and [1.3], exp(iω t) + exp( - iω t) = 2cosω t.  In words, a point oscillating along
a line can be represented as two counter-rotating points.
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In quantum mechanics, two mathematical objects – wavefunctions and
operators – are of central importance.  The wavefunction describes the system
of interest (such as a spin or an electron) completely; if the wavefunction is
known it is possible to calculate all the properties of the system.  The simplest
example of this that is frequently encountered is when considering the
wavefunctions which describe electrons in atoms (atomic orbitals) or molecules
(molecular orbitals).  One often used interpretation of such electronic
wavefunctions is to say that the square of the wavefunction gives the probability
of finding the electron at that point.

Wavefunctions are simply mathematical functions of position, time etc.  For
example, the 1s electron in a hydrogen atom is described by the function exp(–
ar), where r is the distance from the nucleus and a is a constant.

In quantum mechanics, operators represent "observable quantities" such as
position, momentum and energy; each observable has an operator associated
with it.

Operators "operate on" functions to give new functions, hence their name

operator × function = (new function)

An example of an operator is ( )d dx ; in words this operator says "differentiate

with respect to x".  Its effect on the function sin x is

( )d

dx
x xsin cos=

the "new function" is cos x.  Operators can also be simple functions, so for
example the operator x2 just means "multiply by x2".

It is clear from this discussion that operators and functions cannot be re-
ordered in the same way that numbers or functions can be.  For example
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but 
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x x x x

x
x x

x

sin sin

sin sin

Generally operators are thought of as acting on the functions that appear to their
right.
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1.2.1 Eigenfunctions and eigenvalues

Generally, operators act on functions to give another function:

operator × function = (new function)

However, for a given operator there are some functions which, when acted
upon, are regenerated, but multiplied by a constant

operator × function = constant  × (function) [1.4]

Such functions are said to be eigenfunctions of the operator and the constants
are said to be the associated eigenvalues.

If the operator is $Q  (the hat is to distinguish it as an operator) then Eqn.
[1.4] can be written more formally as

$Qf qfq q= [1.5]

where fq is an eigenfunction of $Q  with eigenvalue q; there may be more that
one eigenfunction each with different eigenvalues.  Equation [1.5] is known as
the eigenvalue equation.

For example, is exp(ax), where a is a constant, an eigenfunction of the

operator ( )d dx ?  To find out the operator and function are substituted into the

left-hand side of the eigenvalue equation, Eqn. [1.5]

( ) ( ) 
d

dx
ax a ax





 =exp exp

It is seen that the result of operating on the function is to generate the original
function times a constant.  Therefore exp(ax) is an eigenfunction of the operator

( )d dx  with eigenvalue a.

Is sin(ax), where a is a constant, an eigenfunction of the operator ( )d dx ?

As before, the operator and function are substituted into the left-hand side of the
eigenvalue equation.

( ) ( )

( )

 
d

d
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ax a ax

ax
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sin cos
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As the original function is not regenerated, sin(ax) is not an eigenfunction of the

operator ( )d dx .

1.2.2 Normalization and orthogonality

A function, ψ, is said to be normalised if

( )ψ ψ τ*∫ =d 1

where, as usual, the * represents the complex conjugate.  The notation dτ is
taken in quantum mechanics to mean integration over the full range of all
relevant variables e.g. in three-dimensional space this would mean the range –
 ∞ to + ∞ for all of x, y and z.

Two functions ψ and φ are said to be orthogonal if

( )ψ φ τ*∫ =d 0

It can be shown that the eigenfunctions of an operator are orthogonal to one
another, provided that they have different eigenvalues.

( )
if    and  

then   d

$ $

*

Qf qf Qf q f

f f

q q q q

q q

= = ′

=

′ ′

′∫ τ 0

1.2.3 Bra-ket notation

This short-hand notation for wavefunctions is often used in quantum mechanics.
A wavefunction is represented by a "ket" K ; labels used to distinguish
different wavefunctions are written in the ket.  For example

f q fq q is written  or sometimes 

It is a bit superfluous to write fq inside the ket.

The complex conjugate of a wavefunction is written as a "bra" K ; for
example

( )f qq ′ ′*  is written 
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The rule is that if a bra appears on the left and a ket on the right, integration
over dτ is implied.  So

( )′ ′∫q q f fq q implies d* τ

sometimes the middle vertical lines are merged: ′q q .

Although it takes a little time to get used to, the bra-ket notation is very
compact.  For example, the normalization and orthogonality conditions can be
written

q q q q= ′ =1 0

A frequently encountered integral in quantum mechanics is

ψ ψ τi jQ* $∫ d

where ψi and ψj are wavefunctions, distinguished by the subscripts i and j.  In
bra-ket notation this integral becomes

i Q j$ [1.6]

as before, the presence of a bra on the left and a ket on the right implies
integration over dτ.  Note that in general, it is not allowed to re-order the
operator and the wavefunctions (section 1.2).  The integral of Eqn. [1.6] is often

called a matrix element, specifically the ij element, of the operator $Q .

In the bra-ket notation the eigenvalue equation, Eqn. [1.5], becomes

$Q q q q=

Again, this is very compact.

1.2.4 Basis sets

The position of any point in three-dimensional space can be specified by giving
its x-, y- and z-components.  These three components form a complete
description of the position of the point; two components would be insufficient
and adding a fourth component along another axis would be superfluous.  The
three axes are orthogonal to one another; that is any one axis does not have a
component along the other two.
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In quantum mechanics there is a similar idea of expressing a wavefunction in
terms of a set of other functions.  For example, ψ may be expressed as a linear
combination of other functions

ψ = + + +a a a1 2 31 2 3 K

where the |i〉 are called the basis functions and the ai are coefficients (numbers).
Often there is a limited set of basis functions needed to describe any

particular wavefunction; such a set is referred to as a complete basis set.
Usually the members of this set are orthogonal and can be chosen to be
normalized, i.e.

i j i i= =0 1

1.2.5 Expectation values

A postulate of quantum mechanics is that if a system is described by a
wavefunction ψ then the value of an observable quantity represented by the

operator $Q  is given by the expectation value, $Q , defined as

$
* $

*
Q

Q
=

∫
∫
ψ ψ τ

ψ ψ τ

d

d

or in the bra-ket notation

$
$

Q
Q

=
ψ ψ
ψ ψ
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1.3.1 Spin angular momentum

A mass going round a circular path (an orbit) possesses angular momentum; it
turns out that this is a vector quantity which points in a direction perpendicular
to the plane of the rotation.  The x-, y- and z-components of this vector can be
specified, and these are the angular momenta in the x-, y- and z-directions.  In
quantum mechanics, there are operators which represent these three components
of the angular momentum.

Nuclear spins also have angular momentum associated with them – called
spin angular momentum.  The three components of this spin angular momentum

(along x, y and z) are represented by the operators $ , $ $I I Ix y z and  (from now on

the hats will be dropped unless there is any possibility of ambiguity).
These operators are extremely important in the quantum mechanical

description of NMR, indeed just about all of the theory in these lectures uses
these operators.  It is therefore very important to understand their properties.

1.3.2 Eigenvalues and eigenfunctions

From now on the discussion is restricted to nuclei with nuclear spin quantum
number, I, = 1

2 .  For such a spin, it turns out that there are just
(2I + 1) = 2 eigenfunctions of any one of the operators I I Ix y z,  and .  As it is

traditional to define the direction of the applied magnetic field as z, the
eigenfunctions of the Iz operator are the ones of most interest. These two
eigenfunctions are usually denoted |α〉 and |β〉; they have the properties

I Iz zα α β β= = −1
2

1
2h h

where   h  is Planck's constant divided by 2π.  These properties mean that |α〉 and
|β〉 are indeed eigenfunctions, with eigenvalues 1

2 h  and − 1
2 h  respectively.

These functions are normalized and orthogonal to one another

α α β β α β= = =1 1 0

p

A mass going round a circular
path possesses angular
moment, represented by a
vector which points
perpendicular to the plane of
rotation.
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The interpretation of these two states rests on the idea of angular momentum
as a vector quantity.  It turns out that angular momentum of size I (here I = 1

2 )

can be represented by a vector of length ( )h I I + 1 ; for spin 1
2  the length of

the vector is ( )3 2 h .  This vector can orient itself with respect to a fixed axis,

say the z-axis, in only (2I + 1) ways such that the projection of the vector I onto
the z-axis is ( )I I Ih h K h, ,− −1 , i.e. integer steps between I and – I.  In the case

of I = 1
2 , there are only two possible projections, + 1

2 h  and − 1
2 h .  These

projections are labelled with a quantum number mI, called the magnetic
quantum number.  It has values + 1

2  and − 1
2 .

An alternative way of denoting the two eigenfunctions of the operator Iz is to
label them with the mI values

I m m m

i e I I

z I I I

z z

=

= − = −

h

h h. . 1
2

1
2

1
2

1
2

1
2

1
2

So 1
2  and − 1

2  correspond to |α〉 and |β〉 which can be thought of as "spin up"

and "spin down".

The functions |α〉 and |β〉 are not eigenfunctions of either Ix or Iy.

1.3.3 Raising and lowering operators

The raising operator, I+, and the lowering operator, I–, are defined as

I I iI I I iIx y x y+ −= + = − [1.7]

These operators have the following properties

I I

I I

+ +

− −

− = =

= − − =

1
2

1
2

1
2

1
2

1
2

1
2

0

0

h

h
[1.8]

Their names originated from these properties.  The raising operator acts on the

state − 1
2 , which has mI = − 1

2 , in such a way as to increase mI by one unit to

give mI = + 1
2 .  However, if I+ acts on the state 1

2  there is no possibility of

further increasing mI as it is already at its maximum value; thus I+ acting on 1
2

gives zero.
The same rationalization can be applied to the lowering operator.  It acts on

1
2 , which has mI = + 1

2 , and produces a state on which mI has been lowered by

z z

1
2+

1
2-

3 2

Vector representation of the
spin angular momentum of a
spin half and its projections
onto the z-axis.
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one i.e. mI = − 1
2 .  However, the mI value can be lowered no further so I– acting

on − 1
2  gives zero.

Using the definitions of Eqn. [1.7], Ix and Iy can be expressed in terms of the
raising and lowering operators:

( ) ( )I I I I I Ix y i= + = −+ − + −
1
2

1
2

Using these, and the properties given in Eqn. [1.8], it is easy to work out the
effect that Ix and Iy have on the states |α〉 and |β〉; for example

( )I I I

I I

x α α
α α

β

β

= +

= +

= +

=

+ −

+ −

1
2

1
2

1
2

1
2

1
2

0 h

h

By a similar method it can be found that

I I I i I ix x y yα β β α α β β α= = = = −1
2

1
2

1
2

1
2h h h h [1.9]

These relationships all show that |α〉 and |β〉 are not eigenfunctions of Ix and Iy.

���� +DPLOWRQLDQV

The Hamiltonian, H, is the special name given to the operator for the energy of
the system.  This operator is exceptionally important as its eigenvalues and
eigenfunctions are the "energy levels" of the system, and it is transitions
between these energy levels which are detected in spectroscopy.  To understand
the spectrum, therefore, it is necessary to have a knowledge of the energy levels
and this in turn requires a knowledge of the Hamiltonian operator.

In NMR, the Hamiltonian is seen as having a more subtle effect than simply
determining the energy levels.  This comes about because the Hamiltonian also
affects how the spin system evolves in time.  By altering the Hamiltonian the
time evolution of the spins can be manipulated and it is precisely this that lies at
the heart of multiple-pulse NMR.

The precise mathematical form of the Hamiltonian is found by first writing
down an expression for the energy of the system using classical mechanics and
then "translating" this into quantum mechanical form according to a set of rules.
In this lecture the form of the relevant Hamiltonians will simply be stated rather
than derived.

In NMR the Hamiltonian changes depending on the experimental situation.

i

j  

Ei 

Ej

E = h  ν

A spectroscopic transition
takes place between two
energy levels, Ei and Ej, which
are eigenvalues of the
Hamiltonian; these levels
correspond to eigenfunctions of
the Hamiltonian.
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There is one Hamiltonian for the spin or spins in the presence of the applied
magnetic field, but this Hamiltonian changes when a radio-frequency pulse is
applied.

1.4.1 Free precession

Free precession is when the spins experience just the applied magnetic field, B0,
traditionally taken to be along the z-axis.

1.4.1.1 One spin

The free precession Hamiltonian, Hfree, is

Hfree = γB0hIz

where γ is the gyromagnetic ratio, a constant characteristic of a particular
nuclear species such as proton or carbon-13.  The quantity γB0h has the units of
energy, which is expected as the Hamiltonian is the operator for energy.
However, it turns out that it is much more convenient to write the Hamiltonian
in units of angular frequency (radians s–1), which is achieved by dividing the
expression for Hfree by h to give

Hfree = γB0Iz

To be consistent it is necessary then to divide all of the operators by h.  As a
result all of the factors of h disappear from many of the equations given above
e.g. they become:

I Iz zα α β β= = −1
2

1
2 [1.10]

I I+ −= =β α α βh [1.11]

I I I i I ix x y yα β β α α β β α= = = = −1
2

1
2

1
2

1
2 [1.12]

From now on, the properties of the wavefunctions and operators will be used in
this form.  The quantity γB0, which has dimensions of angular frequency (rad s–

1), is often called the Larmor frequency, ω0.

Eigenfunctions and eigenvalues

The eigenfunctions and eigenvalues of Hfree are a set of functions, |i〉, which
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satisfy the eigenvalue equation:

H i i

I i i
i

z i

free =
=

ε
ω ε0

It is already known that |α〉 and |β〉 are eigenfunctions of Iz, so it follows that
they are also eigenfunctions of any operator proportional to Iz:

H I zfree α ω α
ω α

=
=

0

1
2 0

and likewise H I zfree β ω β ω β= = −0
1
2 0 .

So, |α〉 and |β〉 are eigenfunctions of Hfree with eigenvalues 12 0ω  and − 1
2 0ω ,

respectively.  These two eigenfunctions correspond to two energy levels and a

transition between them occurs at frequency ( )( )1
2 0

1
2 0 0ω ω ω− − = .

1.4.1.2 Several spins

If there is more then one spin, each simply contributes a term to Hfree;
subscripts are used to indicate that the operator applies to a particular spin

H I Iz zfree = + +ω ω0 1 1 0 2 2, , K

where I1z is the operator for the first spin, I2z is that for the second and so on.
Due to the effects of chemical shift, the Larmor frequencies of the spins may be
different and so they have been written as ω0,i.

Eigenfunctions and eigenvalues

As Hfree separates into a sum of terms, the eigenfunctions turn out to be a
product of the eigenfunctions of the separate terms; as the eigenfunctions of
ω0,1I1z are already known, it is easy to find those for the whole Hamiltonian.

As an example, consider the Hamiltonian for two spins

H I Iz zfree = +ω ω0 1 1 0 2 2, ,

From section 1.4.1.1, it is known that, for spin 1



1–17

ω α ω α ω β ω β0 1 1 1
1
2 0 1 0 1 1 1

1
2 0 2 1, , ,I Iz z= = −and

likewise for spin 2

ω α ω α ω β ω β0 2 2 2
1
2 0 2 2 0 2 2 2

1
2 0 2 2, , , ,I Iz z= = −and

Consider the function |β1〉|α2〉, which is a product of one of the eigenfunctions
for spin 1 with one for spin 2.  To show that this is an eigenfunction of Hfree, the
Hamiltonian is applied to the function

( )

( )

H I I

I I

I

z z

z z

z

free β α ω ω β α

ω β α ω β α

ω β α ω β α

ω β α ω β α

ω ω β α

1 2 0 1 1 0 2 2 1 2

0 1 1 1 2 0 2 2 1 2

1
2 0 1 1 2 0 2 1 2 2

1
2 0 1 1 2

1
2 0 2 1 2

1
2 0 1

1
2 0 2 1 2

= +

= +

= − +

= − +

= − +

, ,

, ,

, ,

, ,

, ,

As the action of Hfree on |β1〉|α2〉 is to regenerate the function, then it has been
shown that the function is indeed an eigenfunction, with eigenvalue

( )− +1
2 0 1

1
2 0 2ω ω, , .  Some comment in needed on these manipulation needed

between lines 2 and 3 of the above calculation.  The order of the function |β1〉
and the operator I2z were changed between lines 2 and 3.  Generally, as was
noted above, it is not permitted to reorder operators and functions; however it is
permitted in this case as the operator refers to spin 2 but the function refers to
spin 1.  The operator has no effect, therefore, on the function and so the two can
be re-ordered.

There are four possible products of the single-spin eigenfunctions and each
of these can be shown to be an eigenfunction.  The table summarises the results;
in it, the shorthand notation has been used in which |β1〉|α2〉 is denoted |βα〉 i.e.
it is implied by the order of the labels as to which spin they apply to

Eigenfunctions and eigenvalues for two spins
eigenfunction mI,1 mI,2 M eigenvalue

αα + 1
2 + 1

2
1 + +1

2 0 1
1
2 0 2ω ω, ,

αβ + 1
2 − 1

2
0 + −1

2 0 1
1
2 0 2ω ω, ,

βα − 1
2 + 1

2
0 − +1

2 0 1
1
2 0 2ω ω, ,

ββ − 1
2 − 1

2
1 − −1

2 0 1
1
2 0 2ω ω, ,
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Also shown in the table are the mI values for the individual spins and the
total magnetic quantum number, M, which is simply the sum of the mI values of
the two spins.

In normal NMR, the allowed transitions are between those levels that differ
in M values by one unit.  There are two transitions which come out at  ω0,1,
|βα〉 ↔ |αα〉 and |αβ〉 ↔ |ββ〉; and there are two which come out at ω0,2,
|βα〉 ↔ |ββ〉 and |αβ〉 ↔ |αα〉.  The former two transitions involve a flip in the
spin state of spin 1, whereas the latter pair involve a flip of the state of spin 2.
The energy levels and transitions are depicted opposite.

1.4.1.3 Scalar coupling

The Hamiltonian for scalar coupling contains a term 2πJijIizIjz for each coupled
pair of spins; Jij is the coupling constant, in Hz, between spins i and j.  The
terms representing coupling have to be added to those terms described in
section 1.4.1.2 which represent the basic Larmor precession.  So, the complete
free precession Hamiltonian for two spins is:

H I I J I Iz z z zfree = + +ω ω π0 1 1 0 2 2 12 1 22, ,

Eigenfunctions and eigenvalues for two spins

The product functions, such as |β1〉|α2〉, turn out to also be eigenfunctions of the
coupling Hamiltonian.  For example, consider the function |β1〉|α2〉; to show that
this is an eigenfunction of the coupling part of Hfree, the relevant operator is
applied to the function

( )

2 2

2

2

12 1 2 1 2 12 1 1 2 2

12 1 1
1
2 2

12
1
2 1

1
2 2

1
2 12 1 2

π β α π β α

π β α

π β α

π β α

J I I J I I

J I

J

J

z z z z

z

=

=

= −

= −

As the action of 2πJ12I1zI2z on |β1〉|α2〉 is to regenerate the function, then it

follows that the function is indeed an eigenfunction, with eigenvalue ( )− 1
2 12πJ .

As before, the order of operators can be altered when the relevant operator and
function refer to different spins.

In a similar way, all four product functions can be show to be eigenfunctions
of the coupling Hamiltonian, and therefore of the complete free precession
Hamiltonian.  The table shows the complete set of energy levels.

αβ

ββ

βα

αα

ω0 1,

ω0 1,

ω 0 2,

ω0 2,

The four energy levels of a two-
spin system.  The allowed
transitions of spin 1 are shown
by dashed arrows, and those of
spin 2 by solid arrows.
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There are two allowed transitions in which spin 1 flips, 1–3 and 2–4, and these
appear at ω0,1 + πJ12 and ω0,1 - πJ12, respectively.  There are two further
transitions in which spin 2 flips, 1–2 and 3–4, and these appear at ω0,2 + πJ12

and ω0,2 - πJ12, respectively.  These four lines form the familiar two doublets
found in the spectrum of two coupled spins.

Transition 1–2 is one in which spin 2 flips i.e. changes spin state, but the
spin state of spin 1 remains the same.  In this transition spin 2 can be said to be
active, whereas spin 1 is said to be passive.  These details are summarized in the
diagram below

2 J122 J12

1↔3 2↔4 1↔2 3↔4

0,1 0,2

flips
flips

spin 1
spin 2

The spectrum from two coupled spins, showing which spins are passive and active in each transition.  The
frequency scale is in rad s–1, so the splitting of the doublet is 2πJ12 rad s–1, which corresponds to J12 Hz.

Eigenfunctions and eigenvalues for several spins

For N spins, it is easy to show that the eigenfunctions are the 2N possible
products of the single spin eigenfunctions |α〉 and |β〉.  A particular
eigenfunction can be labelled with the mI values for each spin, mI,i and written

as m m mI I I i, , ,1 2K .  The energy of this eigenfunction is

( )m m m JI i
i

N

i I i I j ij
j i

N

i

N

, , , ,
= >=
∑ ∑∑+

1
0

1

2ω π

The restricted sum over the index j is to avoid counting the couplings more than
once.

Eigenfunctions and eigenvalues for two coupled
spins

number eigenfunction M eigenvalue

1 αα 1 + + +1
2 0 1

1
2 0 2

1
2 12ω ω π, , J

2 αβ 0 + − −1
2 0 1

1
2 0 2

1
2 12ω ω π, , J

3 βα 0 − + −1
2 0 1

1
2 0 2

1
2 12ω ω π, , J

4 ββ 1 − − +1
2 0 1

1
2 0 2

1
2 12ω ω π, , J
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1.4.2 Pulses

In NMR the nuclear spin magnetization is manipulated by applying a magnetic
field which is (a) transverse to the static magnetic field i.e. in the xy-plane, and
(b) oscillating at close to the Larmor frequency of the spins.  Such a field is
created by passing the output of a radio-frequency transmitter through a small
coil which is located close to the sample.

If the field is applied along the x-direction and is oscillating at ωRF, the
Hamiltonian for one spin is

H I t Iz x= +ω ω ω0 12 cos RF

The first term represents the interaction of the spin with the static magnetic
field, and the second represents the interaction with the oscillating field.  The
strength of the latter is given by ω1.

It is difficult to work with this Hamiltonian as it depends on time.  However,
this time dependence can be removed by changing to a rotating set of axes, or a
rotating frame.  These axes rotate about the z-axis at frequency ωRF, and in the
same sense as the Larmor precession.

In such a set of axes the Larmor precession is no longer at ω0, but at
(ω0–ωRF); this quantity is called the offset, Ω.  The more important result of
using the rotating frame is that the time dependence of the transverse field is
removed.  The details of how this comes about are beyond the scope of this
lecture, but can be found in a number of standard texts on NMR.

In the rotating frame, the Hamiltonian becomes time independent

( )H I I

I I
z x

z x

= − +
= +

ω ω ω
ω

0 1

1

RF

Ω

Commonly, the strength of the radiofrequency field is arranged to be much
greater than typical offsets: ω1 >> Ω .  It is then permissible to ignore the offset
term and so write the pulse Hamiltonian as (for pulses of either phase)

H I H Ix x y ypulse, pulse,or= =ω ω1 1

Such pulses are described as hard or non-selective, in the sense that they affect
spins over a range of offsets.  Pulses with lower field strengths, ω1, are termed
selective or soft.

1.4.2.1 Several spins

For multi-spin systems, a term of the form ω1Iix is added for each spin that is

lab. frame

x y

z

rotating frame

x y

z
RF

 - RF

At object rotating at frequency
ω in the xy-plane when viewed
in the lab. frame (fixed axes)
appears to rotate at frequency
(ω – ωRF) when observed in a
frame rotating about the z-axis
at ωRF.

0 RF

Illustration of the relationship
between the Larmor frequency,
ω0, the transmitter frequency,
ωRF, and the offset, Ω.
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affected by the pulse.  Note that in heteronuclear systems, pulses can be applied
independently to nuclei of different kinds

H I Ix x xpulse, = + +ω ω1 1 1 2 K

The product functions given above are not eigenfunctions of these Hamiltonians
for pulses.

From now it, it will be assumed that all calculations are made in the rotating
frame.  So, instead of the free precession Hamiltonian being in terms of Larmor
frequencies it will be written in terms of offsets.  For example, the complete
free precession Hamiltonian for two coupled spins is

H I I J I Iz z z zfree = + +Ω Ω1 1 2 2 12 1 22π

���� 7LPH�HYROXWLRQ

In general, the wavefunction describing a system varies with time, and this
variation can be computed using the time-dependent Schrödinger equation

( ) ( )d

d

ψ
ψ

t

t
iH t= − [1.13]

where ψ(t) indicates that the wavefunction is a function of time.  From this
equation it is seen that the way in which the wavefunction varies with time
depends on the Hamiltonian.  In NMR, the Hamiltonian can be manipulated –
for example by applying radio-frequency fields – and it is thus possible to
manipulate the evolution of the spin system.

As has been seen in section 1.2.5, the size of observable quantities, such as
magnetization, can be found by calculating the expectation value of the
appropriate operator.  For example, the x-magnetization is proportional to the
expectation value of the operator Ix

( ) ( )
( ) ( )

M k I
t I t

t t
x x

x= =
ψ ψ

ψ ψ

where k is a constant of proportion.  As the wavefunction changes with time, so
do the expectation values and hence the observable magnetization.

���� 6XSHUSRVLWLRQ�VWDWHV

This section will consider first a single spin and then a collection of a large
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number of non-interacting spins, called an ensemble.  For example, the single
spin might be an isolated proton in a single molecule, while the ensemble would
be a normal NMR sample made up of a large number of such molecules.  In an
NMR experiment, the observable magnetization comes from the whole sample;
often it is called the bulk magnetization to emphasize this point.  Each spin in
the sample makes a small contribution to the bulk magnetization.  The
processes of going from a system of one spin to one of many is called ensemble
averaging.

The wavefunction for one spin can be written

( )ψ α βα βt c t c t= +( ) ( )

where cα(t) and cβ(t) are coefficients which depend on time and which in
general are complex numbers.  Such a wavefunction is called a superposition
state, the name deriving from the fact that it is a sum of contributions from
different wavefunctions.

In elementary quantum mechanics it is all too easy to fall into the erroneous
view that "the spin must be either up or down, that is in state α or state β".  This
simply is not true; quantum mechanics makes no such claim.

1.6.1 Observables

The x-, y- and z-magnetizations are proportional to the expectation values of the
operators Ix, Iy and Iz.  For brevity, cα(t) will be written cα, the time dependence
being implied.

Consider first the expectation value of Iz (section 1.2.5)

( ) ( )
( )( )

( ) ( )

I
c c I c c

c c c c

c c I c c I c c I c c I

c c c c c c c c

c c c c c c c c

c

z

z

z z a z z

a

a

=
+ +

+ +

=
+ + +

+ + +

=
+ + − + −

α β α β

α β α β

α α β α β β β

α α β α β β β

α α β α β β β

α

α β α β

α β α β

α α β α α β β β
α α β α α β β β

α α β α α β β β

* *

* *

* * * *

* * * *

* * * *

*

1
2

1
2

1
2

1
2

( ) ( )

( )
( )

c c c c c c c

c c c c c c c c

c c c c

c c c c

c c c c

a

a

α β α β β β

α α β α β β β

α α β β

α α β β

α α β β

× + × + × + ×

=
× + × + − × + − ×

+

=
−

+

1 0 0 1

1 0 0 1

1

2

1
2

1
2

1
2

1
2

* * *

* * * *

* *

* *

* *

Iz|α〉 = (1/2) |α〉

Iz|β〉 = –(1/2) |β〉 

〈α|β〉 = 〈β|α〉 = 0

〈α|α〉 = 〈β|β〉 = 1



1–23

Extensive use has been made of the facts that the two wavefunctions |α〉 and |β〉
are normalized and orthogonal to one another (section 1.3.2), and that the effect
of Iz on these wavefunctions is know (Eqn. [1.10]).

To simplify matters, it will be assumed that the wavefunction ψ(t) is
normalized so that 〈ψ |ψ〉 = 1; this implies that c c c cα α β β

* *+ = 1 .

Using this approach, it is also possible to determine the expectation values of
Ix and Iy.  In summary:

( ) ( )
( )

I c c c c I c c c c

I c c c c

z x

y
i

= − = +

= −

1
2

1
2

2

α α β β β α α β

β α α β

* * * *

* *
[1.14]

It is interesting to note that if the spin were to be purely in state |α〉, such that cα

= 1, cβ = 0, there would be no x- and no y-magnetization.  The fact that such
magnetization is observed in an NMR experiment implies that the spins must be
in superposition states.

The coefficients cα and cβ are in general complex, and it is sometimes useful
to rewrite them in the (r/φ) format (see section 1.1.2)

( ) ( )
( ) ( )

c r i c r i

c r i c r i

α α α β α β

α α α β β β

φ φ

φ φ

= =

= − = −

exp exp

exp exp* *

Using these, the expectation values for Ix,y,z become:

( ) ( )
( )

I r r I r r

I r r

z x

y

= − = −

= −

1
2

2 2
α β α β α β

α β α β

φ φ

φ φ

cos

sin

The normalization condition, c c c cα α β β
* *+ = 1 , becomes ( )r rα β

2 2 1+ =  in this

format.  Recall that the r's are always positive and real.

1.6.1.1 Comment on these observables

The expectation value of Iz can take any value between 1
2  (when rα = 1,

rβ = 0) and − 1
2  (when rα = 0, rβ = 1).  This is in contrast to the quantum number

mI which is restricted to values ± 1
2  ("spin up or spin down").  Likewise, the

expectation values of Ix and Iy can take any values between − 1
2  and +1

2 ,
depending on the exact values of the coefficients.
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1.6.1.2 Ensemble averages; bulk magnetization

In order to compute, say, the x-magnetization from the whole sample, it is
necessary to add up the individual contributions from each spin:

I I I Ix x x x= + + +
1 2 3

K

where I x  is the ensemble average, that is the sum over the whole sample.

The contribution from the ith spin, 〈Ix〉i, can be calculate using Eqn. [1.14].

( ) ( ) ( )
( )

( )

I I I I

c c c c c c c c c c c c

c c c c

r r

x x x x= + + +

= + + + + + +

= +

= −

1 2 3

1
2 1

1
2 2

1
2 3

1
2

K

Kβ α β α β α β α β α β α

β α β α

α β α βφ φ

* * * * * *

* *

cos

On the third line the over-bar is short hand for the average written out explicitly
in the previous line.  The fourth line is the same as the third, but expressed in
the (r,φ) format (Eqn. [1.15]).

The contribution from each spin depends on the values of rα,β and φα,β which
in general it would be quite impossible to know for each of the enormous
number of spins in the sample.  However, when the spins are in equilibrium it is
reasonable to assume that the phases φα,β of the individual spins are distributed
randomly.  As 〈Ix〉 = rα rβ cos(φα - φβ) for each spin, the random phases result in
the cosine term being randomly distributed in the range –1 to +1, and as a result
the sum of all these terms is zero.  That is, at equilibrium

I Ix yeq eq
= =0 0

This is in accord with the observation that at equilibrium there is no transverse
magnetization.

The situation for the z-magnetization is somewhat different:
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( ) ( ) ( )
( ) ( )
( )

I I I I

r r r r r r

r r r r r r

r r

z z z z= + + +

= − + − + −

= + + + − + + +

= −

1 2 3

1
2 1

2
1

2 1
2 2

2
2

2 1
2 3

2
3

2

1
2 1

2
2

2
3

2 1
2 1

2
2

2
3

2

1
2

2 2

K

K K

α β α β α β

α α α β β β

α β

, , , , , ,

, , , , , ,

Note that the phases φ do not enter into this expression, and recall that the r's
are positive.

This is interpreted in the following way.  In the superposition state
cα |α〉 + cβ |β〉, c c rα α α

* = 2  can be interpreted as the probability of  finding the

spin in state |α〉, and c c rβ β β
* = 2  as likewise the probability of finding the spin in

state |β〉.  The idea is that if the state of any one spin is determined by
experiment the outcome is always either |α〉 or |β〉.  However, if a large number
of spins are taken, initially all in identical superposition states, and the spin
states of these determined, a fraction c cα α

*  would be found to be in state |α〉,

and a fraction c cβ β
*  in state |β〉.

From this it follows that

I P Pz = −1
2

1
2α β

where Pα and Pβ are the total probabilities of finding the spins in state |α〉 or |β〉,
respectively.  These total probabilities can be identified with the populations of
two levels |α〉 or |β〉.  The z-magnetization is thus proportional to the population
difference between the two levels, as expected.  At equilibrium, this population
difference is predicted by the Boltzmann distribution.

1.6.2 Time dependence

The time dependence of the system is found by solving the time dependent
Schrödinger equation, Eqn. [1.13].  From its form, it is clear that the exact
nature of the time dependence will depend on the Hamiltonian i.e. it will be
different for periods of free precession and radiofrequency pulses.

1.6.2.1 Free precession

The Hamiltonian (in a fixed set of axes, not a rotating frame) is ω0Iz and at time
= 0 the wavefunction will be assumed to be
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( )

( )[ ] ( )[ ]
ψ α β

φ α φ β

α β

α α β β

0 0 0

0 0 0 0

= +

= +

c c

r i r i

( ) ( )

( ) exp ( ) exp

The time dependent Schrödinger equation can therefore be written as

( )

[ ] [ ]
[ ]

d

d

d

d

ψ
ψ

α β
ω α β

ω α β

α β
α β

α β

t

t
iH

c t c t

t
i I c t c t

i c t c t

z

= −

+
= − +

= − −

( ) ( )
( ) ( )

( ) ( )

0

0
1
2

1
2

where use has been made of the properties of Iz when acting on the
wavefunctions |α〉 and |β〉 (section 1.4 Eqn. [1.10]).  Both side of this equation
are left-multiplied by 〈α|, and the use is made of the orthogonality of |α〉 and |β〉

[ ] [ ]d

d
d

d

α α α β
ω α α α β

ω

α β
α β

α
α

c t c t

t
i c t c t

c t

t
i c t

( ) ( )
( ) ( )

( )
( )

+
= − −

= −

0
1
2

1
2

1
2 0

The corresponding equation for cβ is found by left multiplying by 〈β|.

d

d

c t

t
i c t

β
βω

( )
( )= 1

2 0

These are both standard differential equations whose solutions are well know:

( ) ( )c t c i t c t c i tα α β βω ω( ) ( ) exp ( ) ( ) exp= − =0 01
2 0

1
2 0

All that happens is that the coefficients oscillate in phase, at the Larmor
frequency.

To find the time dependence of the expectation values of Ix,y,z, these
expressions for cα,β(t) are simply substituted into Eqn. [1.14]

Iz|α〉 = (1/2) |α〉

Iz|β〉 = –(1/2) |β〉

〈α|β〉 = 〈β|α〉 = 0

〈α|α〉 = 〈β|β〉 = 1
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( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

I t c t c t c t c t

c c i t i t

c c i t i t

c c c c

z = −

= −

− −

= −

1
2

1
2

1
2 0

1
2 0

1
2

1
2 0

1
2 0

1
2

1
2

0 0

0 0

0 0 0 0

α α β β

α α

β β

α α β β

ω ω

ω ω

* *

*

*

* *

exp exp

exp exp

As expected, the z-component does not vary with time, but remains fixed at its
initial value.  However, the x- and y-components vary according to the
following which can be found in the same way

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

I t r r t

I t r r t

x

y

= − +

= − +

1
2 0

1
2 0

0 0 0 0

0 0 0 0

α β β α

α β β α

ω φ φ

ω φ φ

cos

sin

Again, as expected, these components oscillate at the Larmor frequency.

1.6.2.2 Pulses

More interesting is the effect of radiofrequency pulses, for which the
Hamiltonian (in the rotating frame) is ω1Ix.  Solving the Schrödinger equation is
a little more difficult than for the case above, and yields the result

( ) ( ) ( )
( ) ( ) ( )

c t c t ic t

c t c t ic t

α α β

β β α

ω ω

ω ω

= −

= −

0 0

0 0

1
2 1

1
2 1

1
2 1

1
2 1

cos sin

cos sin

In contrast to free precession, the pulse actually causes that coefficients to
change, rather than simply to oscillate in phase.  The effect is thus much more
significant.

A lengthy, but straightforward, calculation gives the following result for 〈Iy〉

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

I t c c c c t

c c c c t

y
i= −

− −

2 1

1
2 1

0 0 0 0

0 0 0 0

α β α β

α α β β

ω

ω

* *

* *

cos

sin
[1.16]

The first term in brackets on the right is simply 〈Iy〉 at time zero (compare Eqn.
[1.14]).  The second term is 〈Iz〉 at time zero (compare Eqn. [1.14]).  So, 〈Iy〉(t)
can be written

( ) ( ) ( )I t I t I ty y z= −0 01 1cos sinω ω
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This result is hardly surprising.  It simply says that if a pulse is applied about
the x-axis, a component which was initially along z 〈Iz〉(0) is rotated towards y.
The rotation from z to y is complete when ω1t = π/2, i.e. a 90° pulse.

The result of Eqn. [1.16] applies to just one spin.  To make it apply to the
whole sample, the ensemble average must be taken

( ) ( ) ( )I t I t I ty y z= −0 01 1cos sinω ω [1.17]

Suppose that time zero corresponds to equilibrium.  As discussed above, at
equilibrium then ensemble average of the y components is zero, but the z
components are not, so

( )I t I ty z= −
eq

sinω1

where 〈Iz〉eq is the equilibrium ensemble average of the z components.  In words,
Eqn. [1.17] says that the pulse rotates the equilibrium magnetization from z to –
y, just as expected.

1.6.3 Coherences

Transverse magnetization is associated in quantum mechanics with what is
known as a coherence.  It was seen above that at equilibrium there is no
transverse magnetization, not because each spin does not make a contribution,
but because these contributions are random and so add up to zero. However, at
equilibrium the z-components do not cancel one another, leading to a net
magnetization along the z-direction.

During the pulse, the z-component from each spin is rotated towards y,
according to Eqn. [1.17].  The key point is that all the contributions from all the
spins, although they start in random positions in the yz-plane, are rotated
through the same angle.  As a result, what started out as a net alignment in the
z-direction rotates in the zy-plane, becoming a net alignment along –y after a
90° pulse.

Another interpretation is to look at the way in which the individual
coefficients vary during the pulse

( ) ( ) ( )
( ) ( ) ( )

c t c t ic t

c t c t ic t

α α β

β β α

ω ω

ω ω

= −

= −

0 0

0 0

1
2 1

1
2 1

1
2 1

1
2 1

cos sin

cos sin

In words, what happens is that the size of the coefficients at time t are related to
those at time zero in a way which is the same for all spins in the sample.
Although the phases are random at time zero, for each spin the phase associated

y

y

z

z

Each spin makes a contribution
to the magnetization in each
direction (top diagram).  A
pulse, here 90° about the x-
axis, rotates all of these
contributions in the same sense
through the same angle
(bottom diagram).
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with cα at time zero is transferred to cβ, and vice versa.  It is this correlation of
phases between the two coefficients which leads to an overall observable signal
from the sample.

���� 'HQVLW\�PDWUL[

The approach used in the previous section is rather inconvenient for calculating
the outcome of NMR experiments.  In particular, the need for ensemble
averaging after the calculation has been completed is especially difficult.  It
turns out that there is an alternative way of casting the Schrödinger equation
which leads to a much more convenient framework for calculation – this is
density matrix theory.  This theory, can be further modified to give an operator
version which is generally the most convenient for calculations in multiple
pulse NMR.

First, the idea of matrix representations of operators needs to be introduced.

1.7.1 Matrix representations

An operator, Q, can be represented as a matrix in a particular basis set of
functions.  A basis set is a complete set of wavefunctions which are adequate
for describing the system, for example in the case of a single spin the two
functions |α〉 and |β〉 form a suitable basis.  In larger spin systems, more basis
functions are needed, for example the four product functions described in
section 1.4.1.2 form such a basis for a two spin system.

The matrix form of Q is defined in this two-dimensional representation is
defined as

Q
Q Q

Q Q
=











α α α β
β α β β

Each of the matrix elements, Qij, is calculated from an integral of the form
〈i|Q|j〉, where |i〉 and |j〉 are two of the basis functions.  The matrix element Qij

appears in the ith row and the jth column.

1.7.1.1 One spin

Particularly important are the matrix representations of the angular momentum
operators.  For example, Iz:

Iz|α〉 = (1/2) |α〉

Iz|β〉 = –(1/2) |β〉

〈α|β〉 = 〈β|α〉 = 0

〈α|α〉 = 〈β|β〉 = 1
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I
I I

I Iz
z z

z z

=










=
−
−











=
−









α α α β
β α β β

α α α β
β α β β

1
2

1
2

1
2

1
2

1
2

1
2

0

0

As usual, extensive use have been made of the properties of Iz and the ortho-
normality of the basis functions (see sections 1.3.2).

The representations of Ix and Iy are easily found, by expressing them in terms
of the raising and lowering operators (section 1.3.3), to be

I Ix y

i

i=






 =

−







0

0

0

0

1
2

1
2

2

2

1.7.1.2 Direct products

The easiest way to find the matrix representations of angular momentum
operators in larger basis sets is to use the direct product.

When two n×n matrices are multiplied together the result is another n×n
matrix.  The rule is that the ijth element of the product is found by multiplying,
element by element, the ith row by the jth column and adding up all the
products.  For example:

a b

c d

p q

r s

ap br aq bs

cp dr cq ds















 =

+ +
+ +









The direct product, symbolized ⊗, of two n×n matrices results in a larger matrix
of size 2n×2n.  The rule for this multiplication is difficult to express formally
but easy enough to describe:

a b

c d

p q

r s

a
p q

r s
b

p q

r s

c
p q

r s
d

p q

r s







 ⊗







 =

×






 ×









×






 ×



























The right-hand matrix is duplicated four times over, because there are four
elements in the left-hand matrix.  Each duplication is multiplied by the
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corresponding element from the left-hand matrix.  The final result is

a b

c d

p q

r s

ap aq bp bq

ar as br bs

cp cq dp dq

cr cs dr ds

ap aq bp bq

ar as br bs

cp cq dp dq

cr cs dr ds







 ⊗







 =



















≡



















(the lines in the central matrix are just to emphasise the relation to the 2 × 2
matrices, they have no other significance).

The same rule applies to matrices with just a single row (row vectors)

( ) ( ) ( )a b p q ap aq bp bq, , , , ,⊗ =

1.7.1.3 Two spins

The basis set for a single spin can be written (|α1〉,|β1〉; the basis set for two
spins can be found from the direct product of two such basis sets, one for each
spin:

( ) ( ) ( )α β α β α α α β β α β β1 1 2 2 1 2 1 2 1 2 1 2, , , , ,⊗ =

In this basis the matrix representation of I1x can be found by writing the operator
as the direct product

I1x ⊗ E2 [1.18]

where E is the unit matrix

E =








1 0

0 1

The subscript 2 on the E in Eqn. [1.18] is in a sense superfluous as the unit
matrix is the same for all spins.  However, it is there to signify that in the direct
product there must be an operator for each spin.  Furthermore, these operators
must occur in the correct order, with that for spin 1 leftmost and so on.  So, to
find the matrix representation of I2x the required direct product is

E1 ⊗ I2x
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In matrix form E1 ⊗ I2x is

E I x1 2

1
2

1
2

1
2

1
2

1
2

1
2

1 0

0 1

0

0

0 0 0

0 0 0

0 0 0

0 0 0

⊗ =






 ⊗









=



















and I1x ⊗ E2 is

I Ex1 2

1
2

1
2

1
2

1
2

1
2

1
2

0

0

1 0

0 1

0 0 0

0 0 0

0 0 0

0 0 0

⊗ =






 ⊗









=



















As a final example I1x ⊗ I2y is

I Ix y

i

i

i

i

i

i

1 2

1
2

1
2

2

2

4

4

4

4

0

0

0

0

0 0 0

0 0 0

0 0 0

0 0 0

⊗ =






 ⊗

−







=

−

−



















All of these matrices are hermetian, which means that matrix elements related
by reflection across the diagonal have the property that Qji = Qij*.

1.7.2 Density matrix

For a one spin system the density matrix, σ, is defined according to its elements

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

σ α α α β

β α β β

t
c t c t c t c t

c t c t c t c t
=













* *

* *
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where the over-bars indicate ensemble averaging.  This matrix contains all the
information needed to calculate any observable quantity.  Formally, σ is defined
in the following way:

( ) ( ) ( )σ ψ ψt t t=

1.7.2.1 Observables

It can be shown that the expectation value of an operator, Q, is given by

[ ]Q Q= Tr σ

where Tr[A] means take the trace, that is the sum of the diagonal elements, of
the matrix A.

For example, the expectation value of Iz is

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )
( )

I
c t c t c t c t

c t c t c t c t

c t c t

c t c t

c t c t c t c t

r r

z =










 −




















=
−























= −

= −

Tr

Tr

α α α β

β α β β

α α

β β

α α β β

α β

* *

* *

*

*

* *

1
2

1
2

1
2

1
2

1
2

1
2

2 2

0

0

K

K

This is directly comparable to the result obtained in section 1.6.1.2.
The very desirable feature of this definition of the density matrix and the

trace property for calculation observables is that the ensemble averaging is done
before the observable is computed.

The expectation value of Ix is

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

I
c t c t c t c t

c t c t c t c t

c t c t c t c t

x =































= +

Tr α α α β

β α β β

α β β α

* *

* *

* *

0

0

1
2

1
2

1
2
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Again, this is directly comparable to the result obtained in section 1.6.1.2
The off diagonal elements of the density matrix can contribute to transverse

magnetization, whereas the diagonal elements only contribute to longitudinal

magnetization.  In general, a non-zero off-diagonal element ( ) ( )c t c ti j
*  indicates

a coherence involving levels i and j, whereas a diagonal element, ( ) ( )c t c ti i
* ,

indicates the population of level i.
From now on the ensemble averaging and time dependence will be taken as

implicit and so the elements of the density matrix will be written simply c ci j
*

unless there is any ambiguity.

1.7.2.2 Equilibrium

As described in section 1.6.1.2, at equilibrium the phases of the super-position

states are random and as a result the ensemble averages ( ) ( )c t c tα β
*  and

( ) ( )c t c tβ α
*  are zero.  This is easily seen by writing then in the r/φ format

( ) ( )c c r i r iα β α α β βφ φ* exp exp= −

= 0 at equilibrium

However, the diagonal elements do not average to zero but rather correspond to
the populations, Pi, of the levels, as was described in section 1.6.1.2

( ) ( )c c r i r i

r

P

α α α α α α

α

α

φ φ* exp exp= −

=
=

2

The equilibrium density matrix for one spin is thus

σ α

β
eq =









P

P

0

0

As the energy levels in NMR are so closely spaced, it turns out that to an
excellent approximation the populations can be written in terms of the average
population of the two levels, Pav, and the difference between the two
populations, ∆, where ∆ = Pα - Pβ
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σeq
av

av

=
+

−








P

P

1
2

1
2

0

0

∆
∆

Comparing this with the matrix representations of Iz and E, σeq, can be written

σeq av

av

= +

=






 +

−








P E I

P

z∆

∆
1 0

0 1

0

0

1
2

1
2

It turns out that the part from the matrix E does not contribute to any
observables, so for simplicity it is ignored.  The factor ∆ depends on details of
the spin system and just scales the final result, so often it is simply set to 1.
With these simplifications σeq is simply Iz.

1.7.2.3 Evolution

The density operator evolves in time according to the following equation, which
can be derived from the time dependent Schrödinger equation (section 1.5):

( ) ( ) ( )[ ]d

d

σ
σ σ

t

t
i H t t H= − − [1.19]

Note that as H and σ are operators their order is significant.  Just as in section
1.5 the evolution depends on the prevailing Hamiltonian.

If H is time independent (something that can usually be arranged by using a
rotating frame, see section 1.4.2), the solution to Eqn. [1.19] is straightforward

( ) ( ) ( ) ( )σ σt iHt iHt= −exp exp0

where again the ordering of the operators must be preserved.  All the terms is
this equation can be thought of as either matrices or operators, and it is the
second of these options which is discussed in the next section.

1.7.3 Operator form of the density matrix

So far, Hamiltonians have been written in terms of operators, specifically the
angular momentum operators Ix,y,z, and it has also been seen that these operators
represent observable quantities, such as magnetizations.  In addition, it was
shown in section 1.1.2.2 that the equilibrium density matrix has the same form
as Iz.  These observations naturally lead to the idea that it might be convenient
also to write the density matrix in terms of the angular momentum operators.
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Specifically, the idea is to expand the density matrix as a combination of the
operators:

σ(t) = a(t)Iz + b(t)Iy + c(t)Iz

where a, b and c are coefficients which depend on time.

1.7.3.1 Observables

From this form of the density matrix, the expectation value of, for example, Ix

can be computed in the usual way (section 1.7.2.1).

[ ]
( )[ ]

[ ] [ ] [ ]

I I

aI bI cI I

aI I bI I cI I

x x

x y z x

x x y x z x

=

= + +

= + +

Tr

Tr

Tr Tr Tr

σ

where to get to the last line the property that the trace of a sum of matrices is
equal to the sum of the traces of the matrices has been used.

It turns out that Tr[IpIq] is zero unless p = q when the trace is = 1
2 ; for

example

[ ]Tr Tr

Tr

I Ix x =



























=




















=

0

0

0

0

1
2

1
2

1
2

1
2

1
4

1
4

1
2

K

K

[ ]Tr Tr

Tr

I Ix z =








−




















=
















 =

0

0

0

0

0

0
0

1
2

1
2

1
2

1
2

K

K

In summary it is found that

I a I b I cx y z= = =1
2

1
2

1
2
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This is a very convenient result.  By expressing the density operator in the form
σ(t) = a(t)Iz + b(t)Iy + c(t)Iz the x-, y- and z-magnetizations can be deduced just
by inspection as being proportional to a(t), b(t), and c(t) respectively (the factor
of one half is not important).  This approach is further developed in the lecture 2
where the product operator method is introduced.

1.7.3.2 Evolution

The evolution of the density matrix follows the equation

( ) ( ) ( ) ( )σ σt iHt iHt= −exp exp0

Often the Hamiltonian will be a sum of terms, for example, in the case of free
precession for two spins H = Ω1I1z + Ω2I2z.  The exponential of the sum of two
operators can be expressed as a product of two exponentials provided the
operators commute

( ) ( ) ( )exp exp expA B A B A B+ =    provided  and  commute

Commuting operators are ones whose effect is unaltered by changing their
order: i.e. ABψ = BAψ; not all operators commute with one another.

Luckily, operators for different spins do commute so, for the free precession
Hamiltonian

( ) [ ]( )
( ) ( )

exp exp

exp exp

− = − +

= − −

iHt i I I t

i I t i I t

z z

z z

Ω Ω

Ω Ω
1 1 2 2

1 1 2 2

The evolution of the density matrix can then be written

( ) ( ) ( ) ( ) ( ) ( )σ σt i I t i I t i I t i I tz z z z= − −exp exp exp expΩ Ω Ω Ω1 1 2 2 1 1 2 20

The operators for the evolution due to offsets and couplings also commute with
one another.

For commuting operators the order is immaterial.  This applies also to their
exponentials, e.g. exp(A) B = B exp(A).  This property is used in the following

( ) ( ) ( ) ( )
( )
( )

exp exp exp exp

exp

exp

− = −

= − +

= =

i I t I i I t i I t i I t I

i I t i I t I

I I

z x z z z x

z z x

x x

Ω Ω Ω Ω

Ω Ω
1 1 2 1 1 1 1 1 1 2

1 1 1 1 2

2 20
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In words this says that the offset of spin 1 causes no evolution of transverse
magnetization of spin 2.

These various properties will be used extensively in lecture 2.
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2 Product Operators

The product operator formalism is a complete and rigorous quantum
mechanical description of NMR experiments; the formalism is a version of
density matrix theory and is well suited to calculating the outcome of
modern multiple-pulse experiments.

One particularly appealing feature is the fact that the operators have a
clear physical meaning and that the effects of pulses and delays can be
thought of as geometrical rotations.  To emphasise this connection the
discussion will start with a brief summary of the vector model.

���� 9HFWRU�PRGHO�RI�105

The vector model is a complete description of the behaviour of an ensemble
(a macroscopic sample) of non-interacting spin-half nuclei.  Each spin has
two energy levels and at equilibrium the lower of these is more populated.
The result is a net magnetization of the sample along the direction of the
applied magnetic field (taken to be the z-direction).  The vector model
focuses entirely on the behaviour of this magnetization, which can be
represented as a vector.

Radiofrequency pulses are represented as rotations about the x- or y-axes;
if the radiofrequency field strength is ω1 (rad s–1) then a pulse applied for a
time t causes a rotation through an angle α, where α = ω1t. For example a
90° pulse about the x-axis has ω1t = π/2 and rotates magnetization from the
z-axis onto the –y-axis.

Free precession is represented as a rotation about the z-axis at frequency
Ω (rad s–1), where Ω is the offset (that is the difference between the Larmor
frequency and the transmitter frequency).  Free precession for a time t causes
a rotation through an angle α, where α = Ωt.

Only x- and y-magnetization are directly observable in an NMR
experiment; it is the precession of the magnetization in the xy-plane which
gives rise to the free induction signal.

2.1.1 Example – the conventional pulse-acquire experiment

Assume that the system starts at equilibrium; a pulse of flip angle α is
applied and then the free induction signal is recorded.  Let the equilibrium
magnetization (aligned along the z-axis) have size M0.  After the pulse the z-
and y-magnetization (Mz and My, respectively) are

Mz = cos α M0         My = - sin α M0

Free precession, which is a rotation about the z-axis, has no effect on the z-
component.  The y-component rotates in the xy-plane giving the following
transverse components after time t

spin down
spin up

x y

z

Unequal populations of the two
energy levels give rise to a net
magnetization, represented as
a vector along the z-axis.

y

z

A pulse about the x-axis rotates
the magnetization through an
angle α in the yz-plane.  The
picture shows the view down
the x-axis.
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My(t) = -sinα cosΩ t M0       Mx(t) = sinα sinΩ t M0

It is these transverse (that is, x and y) components of the magnetization that
are detected in NMR experiments.  It is seen that these are oscillating at
frequency Ω, and that their overall size depends on the sine of the flip angle
i.e. they are a maximum for a 90° pulse.

2.1.2 Example – the spin echo

( ) ( )90 180° °x
a b

x
e f

delay delay acquireτ τ

a b c d e f
y-component

x-component

x x x

y y y

After the delay, point b, the vector can be resolved into y- and x-components
as shown in c.  The 180° pulse about the x-axis has no effect on the x-
component of the magnetization; in contrast the y-component is rotated by
180° in the yz-plane, ending up along the opposite axis.  The individual
components after the 180° pulse are shown in d, and corresponding vector is
shown in e.  The effect of the 180°  pulse about the x-axis is to reflect the
vector in the xz-plane.  During the second time τ  the vector precesses in the
same direction as it did during the first time τ and through the same angle,
ending up along the y-axis.

At the end of the sequence the vector always ends up along the y-axis,
regardless of the time τ and the offset; the sequence is said to "refocus the
offset (or shift)".

���� 2SHUDWRUV�IRU�RQH�VSLQ

2.2.1 Operators

Operators are mathematical functions which arise in quantum mechanics
(see lecture 1); as their name suggest, they operate on functions.  In quantum
mechanics operators represent observable quantities, such as energy, angular
momentum and magnetization.

For a single spin-half, the x- y- and z-components of the magnetization
are represented by the spin angular momentum operators Ix, Iy and Iz

respectively.  Thus at any time the state of the spin system, in quantum
mechanics the density operator, σ, can be represented as a sum of different
amounts of these three operators
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( ) ( ) ( ) ( )σ t a t I b t I c t Ix y z= + +

The amounts of the three operators will vary with time during pulses and
delays.   This expression of the density operator as a combination of the spin
angular momentum operators is exactly analogous to specifying the three
components of a magnetization vector.

At equilibrium the density operator is proportional to Iz (there is only z-
magnetization present).  The constant of proportionality is usually
unimportant, so it is usual to write σeq = Iz.

2.2.2 Hamiltonians for pulses and delays

In order to work out how the density operator varies with time we need to
know the Hamiltonian (which is also an operator) which is acting during
that time.

The free precession Hamiltonian (i.e. that for a delay), Hfree, is

Hfree = ΩIz

In the vector model free precession involves a rotation at frequency Ω about
the z-axis; in the quantum mechanical picture the Hamiltonian involves the
z-angular momentum operator, Iz – there is a direct correspondence.

The Hamiltonian for a pulse about the x-axis, Hpulse, is

Hpulse,x = ω1Ix

and for a pulse about the y-axis it is

Hpulse,y = ω1Iy

Again there is a clear connection to the vector model where pulses result in
rotations about the x- or y-axes.

2.2.3 Equation of motion

The density operator at time t, σ(t), is computed from that at time 0, σ(0) ,
using the following relationship

( ) ( ) ( ) ( )σ σt iHt iHt= −exp exp0

where H is the relevant hamiltonian.  If H and σ are expressed in terms of
the angular momentum operators if turns out that this equation can be solved
easily with the aid of a few rules.

Suppose that an x-pulse, of duration tp, is applied to equilibrium
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magnetization.  In this situation H = ω1Ix and σ(0) = Iz; the equation to be
solved is

( ) ( ) ( )σ ω ωt i t I I i t Ix z xp p p= −exp exp1 1

Such equations involving angular momentum operators are common in
quantum mechanics and the solution to them are already all know.  The
identity required here to solve this equation is

( ) ( )exp exp cos sin− ≡ −i I I i I I Ix z x z yθ θ θ θ [2.1]

This is interpreted as a rotation of Iz by an angle θ about the x-axis.  By
putting θ = ω1tp this identity can be used to solve Eqn. [2.1]

( )σ ω ωt t I t Iz yp p p= −cos sin1 1

The result is exactly as expected from the vector model: a pulse about the x-
axis rotates z-magnetization towards the –y-axis, with a sinusoidal
dependence on the flip angle, θ.

2.2.4 Standard rotations

Given that there are only three operators, there are a limited number of
identities of the type of Eqn. [2.1].  They all have the same form

( ) ( )exp exp

cos sin

−
≡ +

i I i Ia aθ θ
θ θ

{old operator}

{old operator} {new operator}

where {old operator}, {new operator} and Ia are determined from the three
possible angular momentum operators according to the following diagrams;
the label in the centre indicates which axis the rotation is about

-x

z

x

-z

yy

z

-y

-z

x-y

x

y

-x

z

I II III

Angle of rotation = Ωt for offsets and ω1tp for pulses

First example: find the result of rotating the operator Iy by θ about the x-
axis, that is

( ) ( )exp exp− i I I i Ix y xθ θ
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For rotations about x the middle diagram II is required.  The diagram shows
that Iy (the "old operator") is rotated to Iz (the "new operator").  The required
identity is therefore

exp(- iθIx) Iy exp(iθIx) ≡ cosθ Iy + sinθ Iz

Second example: find the result of

exp(- iθIy) {- Iz} exp(iθIy)

This is a rotation about y, so diagram III is required.  The diagram shows
that –Iz (the "old operator") is rotated to –Ix (the "new operator").  The
required identity is therefore

( ){ } ( ) { } { }exp exp cos sin –

cos sin

− − ≡ − +

≡ − −

i I I i I I I

I I

y z y z x

z x

θ θ θ θ

θ θ

Finally, note that a rotation of an operator about its own axis has no effect
e.g. a rotation of Ix about x leaves Ix unaltered.

2.2.5 Shorthand notation

To save writing, the arrow notation is often used.  In this, the term Ht is
written over an arrow which connects the old and new density operators.
So, for example, the following

( ) ( ) ( ) ( )σ ω σ ωt i t I i t Ix xp p p= −exp exp1 10

is written

( ) ( )σ σω
0 1t I x tp

p →

For the case where σ(0) = Iz

I t I t Iz

t I

z y
xω ω ω1

1 1
p

p p → cos – sin
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2.2.6 Example calculation: spin echo

( ) ( )90 180° °x
a b

x
e f

delay delay acquireτ τ

At a the density operator is –Iy.  The transformation from a to b is free
precession, for which the Hamiltonian is ΩIz; the delay τ therefore
corresponds to a rotation about the z-axis at frequency Ω.  In the short-hand
notation  this is

( )−  →I by
I xΩτ σ

To solve this diagram I above is needed with the angle = Ωτ; the "new
operator" is Ix

−  → − +I I Iy
I

y x
zΩ Ω Ωτ τ τcos sin

In words this says that the magnetization precesses from –y towards +x.

The pulse about x has the Hamiltonian ω1Ix; the pulse therefore
corresponds to a rotation about x for a time tp such that the angle, ω1tp, is π
radians.  In the shorthand notation

( )− +  →cos sinΩ Ωτ τ σω
I I ey x

t I x1 p [2.2]

Each term on the left is dealt with separately.  The first term is a rotation of
y about x; the relevant diagram is thus II

−  → − −cos cos cos cos sinΩ Ω Ωτ τ ω τ ωω
I t I t Iy

t I

y z
x1

1 1
p

p p

However, the flip angle of the pulse, ω1tp, is π so the second term on the
right is zero and the first term just changes sign (cos π = –1); overall the
result is

−  →cos cosΩ Ωτ τπI Iy
I

y
x

The second term on the left of Eqn. [2.2] is easy to handle as it is unaffected
by a rotation about x.  Overall, the effect of the 180° pulse is then

− +  → +cos sin cos sinΩ Ω Ω Ωτ τ τ τπ
I I I Iy x

I

y x
x [2.3]
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As was shown using the vector model, the y-component just changes sign.
The next stage is the evolution of the offset for time τ. Again, each term on
the right of Eqn. [2.3] is considered separately

cos cos cos sin cos

sin cos sin sin sin

Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω

Ω

Ω

τ τ τ τ τ

τ τ τ τ τ

τ

τ

I I I

I I I

y
I

y x

x
I

x y

z

z

 → −

 → +

Collecting together the terms in Ix and Iy the final result is

( ) ( )cos cos sin sin cos sin sin cosΩ Ω Ω Ω Ω Ω Ω Ωτ τ τ τ τ τ τ τ+ + −I Iy x

The bracket multiplying Ix is zero and the bracket multiplying Iy is =1
because of the identity cos2θ + sin2θ = 1.  Thus the overall result of the spin
echo sequence can be summarised

I Iz
x x

y
90 180° − ° − − →( )– ( )τ τ

In words, the outcome is independent of the offset, Ω, and the delay τ, even
though there is evolution during the delays.  The offset is said to be
refocused by the spin echo.

In general the sequence

– τ – 180°(x) – τ – [2.4]

refocuses any evolution due to offsets; this is a very useful feature which is
much used in multiple-pulse NMR experiments.

One further point is that as far as the offset is concerned the spin echo
sequence of Eqn. [2.4] is just equivalent to 180°(x).

���� 2SHUDWRUV�IRU�WZR�VSLQV

2.3.1 Product operators for two spins

The product operator approach comes into its own when coupled spin
systems are considered; such systems cannot be treated by the vector model.
However, product operators provide a clean and simple description of the
important phenomena of coherence transfer and multiple quantum
coherence.

2.3.2 Product operators for two spins

For a single spin the three operators needed for a complete description are Ix,
Iy and Iz.  For two spins, three such operators are needed for each spin; an

J12 J12

1 2

The spectrum from two coupled
spins, with offsets Ω1 and Ω2

(rad s–1) and mutual coupling
J12 (Hz).
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additional subscript, 1 or 2, indicates which spin they refer to.

spin 1: I1x   I1y   I1z         spin 2: I2x   I2y   I2z

I1z represents z-magnetization of spin 1, and I2z likewise for spin 2.  I1x

represents x-magnetization on spin 1.  As spin 1 and 2 are coupled, the
spectrum consists of two doublets and the operator I1x can be further
identified with the two lines of the spin-1 doublet.  In the language of
product operators I1x is said to represent in-phase magnetization of spin 1;
the description in-phase means that the two lines of the spin 1 doublet have
the same sign and lineshape.

Following on in the same way I2x represents in-phase magnetization on
spin 2. I1y and I2y also represent in-phase magnetization on spins 1 and 2,
respectively, but this magnetization is aligned along y and so will give rise
to a different lineshape.  Arbitrarily, an absorption mode lineshape will be
assigned to magnetization aligned along x and a dispersion mode lineshape
to magnetization along y.

I1x I1y

I2x I2y

1
1

2
2

There are four additional operators which represent anti-phase
magnetization: 2I1xI2z, 2I1yI2z, 2I1zI2x, 2I1zI2y (the factors of 2 are needed for
normalization purposes).  The operator 2I1xI2z is described as magnetization
on spin 1 which is anti-phase with respect to the coupling to spin 2.

2 I1xI2z 2 I1yI2z

2 I1zI2x 2 I1zI2y

1
1

2
2

Note that the two lines of the spin-1 multiplet are associated with different
spin states of spin-2, and that in an anti-phase multiplet these two lines have
different signs.  Anti-phase terms are thus sensitive to the spin states of the
coupled spins.

There are four remaining product operators which contain two transverse
(i.e. x- or y-operators) terms and correspond to multiple-quantum
coherences; they are not observable

multiple quantum: 2I1xI2y    2I1yI2x    2I1xI2x    2I1yI2y

Finally there is the term 2I1zI2z which is also not observable and corresponds
to a particular kind of non-equilibrium population distribution.

The absorption and dispersion
lineshapes.  The absorption
lineshape is a maximum on
resonance, whereas the
dispersion goes through zero at
this point.  The "cartoon" forms
of the lineshapes are shown in
the lower part of the diagram.

spin state
of spin 2

1

The two lines of the spin-1
doublet can be associated with
different spin states of spin 2.
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2.3.3 Evolution under offsets and pulses

The operators for two spins evolve under offsets and pulses in the same way
as do those for a single spin.  The rotations have to be applied separately to
each spin and it must be remembered that rotations of spin 1 do not affect
spin 2, and vice versa.

For example, consider I1x evolving under the offset of spin 1 and spin 2.
The relevant Hamiltonian is

Hfree = Ω1I1z + Ω2I2z

where Ω1 and Ω2 are the offsets of spin 1 and spin 2 respectively.  Evolution
under this Hamiltonian can be considered by applying the two terms
sequentially (the order is immaterial)

I

I

I

x
H t

x
tI tI

x
tI tI

z z

z z

1

1

1

1 1 2 2

1 1 2 2

free →

 →

 →  →

+Ω Ω

Ω Ω

The first "arrow" is a rotation about z

I t I t Ix
tI

x y
tIz z

1 1 1 1 1
1 1 2 2Ω ΩΩ Ω → +  →cos sin

The second arrow leaves the intermediate state unaltered as spin-2 operators
have not effect on spin-1 operators.  Overall, therefore

I t I t Ix
tI tI

x y
z z

1 1 1 1 1
1 1 2 2Ω Ω Ω Ω+ → +cos sin

A second example is the term 2I1xI2z evolving under a 90° pulse about the
y-axis applied to both spins. The relevant Hamiltonian is

H I Iy y= +ω ω1 1 1 2

The evolution can be separated into two successive rotations

2 1 2
1 1 1 2I Ix z

tI tIy yω ω →  →

The first arrow affects only the spin-1 operators; a 90° rotation of I1x about y
gives – I1z (remembering that ω1t = π/2 for a 90° pulse)
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2 2 2

2 2

1 2 1 1 2 1 1 2

1 2

2

1 2

2

1 1 1 2

1 2

I I t I I t I I

I I I I

x z

tI

x z z z

tI

x z

I

z z

I

y y

y y

ω ω

π π

ω ω → −  →

 → −  →

cos sin

The second arrow only affects the spin 2 operators; a 90° rotation of z about
y takes it to x

2 2 21 2

2

1 2

2

1 2
1 2I I I I I Ix z

I

z z

I

z x
y yπ π → −  → −

The overall result is that anti-phase magnetization of spin 1 has been
transferred into anti-phase magnetization of spin 2.  Such a process is called
coherence transfer and is exceptionally important in multiple-pulse NMR.

2.3.4 Evolution under coupling

The new feature which arises when considering two spins is the effect of
coupling between them.  The Hamiltonian representing this coupling is itself
a product of two operators:

H J I Iz zJ = 2 12 1 2π

where J12  is the coupling in Hz.

Evolution under coupling causes the interconversion of in-phase and anti-
phase magnetization according to the following diagrams

xz

y

-xz

-y

zz-yz

x

yz

-x

zz

IV V

angle = πJt

For example, in-phase magnetization along x becomes anti-phase along y
according to the diagram d

I J t I J t I Ix
J t I I

x y z
z z

1
2

12 1 12 1 2
12 1 2 2π π π → +cos sin

note that the angle is πJ12t i.e. half the  angle for the other rotations, I–III.
Anti-phase magnetization along x becomes in-phase magnetization along

y; using diagram V:

2 21 2
2

12 1 2 12 1
12 1 2I I J t I I J t Ix z

J t I I
x z y

z zπ π π → +cos sin
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The diagrams apply equally well to spin-2; for example

−  → +2 21 2
2

12 1 2 12 2
12 1 2I I J t I I J t Iz y

J t I I
z y x

z zπ π π– cos sin

Complete interconversion of in-phase and anti-phase magnetization
requires a delay such that πJ12t = π/2 i.e. a delay of 1/(2J12).  A delay of 1/J12

causes in-phase magnetization to change its sign:

I I I I Ix
J t I I t J

y z y
J t I I t J

y
z z z z

1
2 1 2

1 2 2
2 1

2
12 1 2 12 12 1 2 122π π= = →  → −

���� 6SLQ�HFKRHV

It was shown in section 2.2.6 that the offset is refocused in a spin echo.  In
this section it will be shown that the evolution of the scalar coupling is not
necessarily refocused.

2.4.1 Spin echoes in homonuclear spin system

In this kind of spin echo the 180° pulse affects both spins i.e. it is a non-
selective pulse:

– τ – 180°(x, to spin 1 and spin 2) – τ –

At the start of the sequence it will be assumed that only in-phase x-
magnetization on spin 1 is present: I1x.  In fact the starting state is not
important to the overall effect of the spin echo, so this choice is arbitrary.

It was shown in section 2.2.6 that the spin echo applied to one spin
refocuses the offset; this conclusion is not altered by the presence of a
coupling so the offset will be ignored in the present calculation.  This greatly
simplifies things.

For the first delay τ only the effect of evolution under coupling need be
considered therefore:

I J I J I Ix
J I I

x y z
z z

1
2

12 1 12 1 2
12 1 2 2π τ π τ π τ → +cos sin

The 180° pulse affects both spins, and this can be calculated by applying the
180° rotation to each in succession

cos sinπ τ π τ π πJ I J I Ix y z
I Ix x

12 1 12 1 22 1 2+  →  →

where it has already been written in that ω1tp = π, for a 180° pulse.  The
180° rotation about x for spin 1 has no effect on the operator I1x and I2z, and
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it simply reverses the sign of the operator I1y

cos sin cos sinπ τ π τ π τ π τπ πJ I J I I J I J I Ix y z
I

x y z
Ix x

12 1 12 1 2 12 1 12 1 22 21 2+  → −  →

The 180° rotation about x for spin 2 has no effect on the operators I1x and
I1y, but simply reverses the sign of the operator I2z.  The final result is thus

cos sin cos sin

cos sin

π τ π τ π τ π τ

π τ π τ

π

π

J I J I I J I J I I

J I J I I

x y z
I

x y z

I
x y z

x

x

12 1 12 1 2 12 1 12 1 2

12 1 12 1 2

2 2

2

1

2

+  → −

 → +

Nothing has happened; the 180° pulse has left the operators unaffected!  So,
for the purposes of the calculation it is permissible to ignore the 180° pulse
and simply allow the coupling to evolve for 2τ.  The final result can
therefore just be written down:

I J I J I Ix
x

x y z1
180

12 1 12 1 22 2 2τ τ π τ π τ− ° − → +( ) cos sin

From this it is easy to see that complete conversion to anti-phase
magnetization requires 2πJ12τ = π/2 i.e. τ = 1/(4 J12).

The calculation is not quite as simple if the initial state is chosen as I1y

(see exercises), but the final result is just the same – the coupling evolves for
2τ:

I J I J I Iy
x

y x z1
180

12 1 12 1 22 2 2τ τ π τ π τ− ° − → − +( ) cos sin

In fact, the general result is that the sequence

– τ – 180°(x, to spin 1 and spin 2) – τ –

is equivalent to the sequence

– 2τ – 180°(x, to spin 1 and spin 2)

in which the offset is ignored and coupling is allowed to act for time 2τ.
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2.4.2 Interconverting in-phase and anti-phase states

So far, spin echoes have been demonstrated as being useful for generating
anti-phase terms, independent of offsets.  For example, the sequence

90°(x) – 1/(4J12) – 180°(x) – 1/(4J12) –

generates pure anti-phase  magnetization.

Equally useful is the sequence

– 1/(4J12) – 180°(x) – 1/(4J12) –

which will convert pure anti-phase magnetization, such as 2I1xI2z into in-
phase magnetization, I1y.

2.4.3 Spin echoes in heteronuclear  spin systems

If spin 1 and spin 2 are different nuclear species, such as 13C and 1H, it is
possible to choose to apply the 180° pulse to either or both spins; the
outcome of the sequence depends on the pattern of 180° pulses.

Sequence a has already been analysed: the result is that the offset is
refocused but that the coupling evolves for time 2τ.  Sequence b still
refocuses the offset of spin 1, but it turns out that the coupling is also
refocused.  Sequence c refocuses the coupling but leaves the evolution of the
offset unaffected.

2.4.3.1 Sequence b

It will be assumed that the offset is refocused, and attention will therefore be
restricted to the effect of the coupling

I J I J I Ix
J I I

x y z
z z

1
2

12 1 12 1 2
12 1 2 2π τ π τ π τ → +cos sin

The 180°(x) pulse is only applied to spin 1

cos sin cos sinπ τ π τ π τ π τπ
J I J I I J I J I Ix y z

I

x y z
x

12 1 12 1 2 12 1 12 1 22 21+  → − [2.5]

The two terms on the right each evolve under the coupling during the second
delay:

spin 1

spin 1

spin 1

spin 2

spin 2

spin 2

a

b

c

Three different spin echo
sequences that can be applied
to heteronuclear spin systems.
The open rectangles represent
180° pulses.
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cos

cos cos sin cos

sin

cos sin sin sin

π τ
π τ π τ π τ π τ

π τ
π τ π τ π τ π τ

π τ

π τ

J I

J J I J J I I

J I I

J J I I J J I

x

J I I

x y z

y z
J I I

y z x

z z

z z

12 1
2

12 12 1 12 12 1 2

12 1 2
2

12 12 1 2 12 12 1

12 1 2

12 1 2

2

2

2

 →
+

−  →

− +

Collecting the terms together and noting that cos2θ + sin2θ = 1 the final
result is just I1x.  In words, the effect of the coupling has been refocused.

2.4.3.2 Sequence c

As there is no 180° pulse applied to spin 1, the offset of spin 1 is not
refocused, but continues to evolve for time 2τ.  The evolution of the
coupling is easy to calculate:

I J I J I Ix
J I I

x y z
z z

1
2

12 1 12 1 2
12 1 2 2π τ π τ π τ → +cos sin

This time the 180°(x) pulse is applied to spin 2

cos sin cos sinπ τ π τ π τ π τπJ I J I I J I J I Ix y z
I

x y z
x

12 1 12 1 2 12 1 12 1 22 22+  → −

The results is exactly as for sequence b (Eqn. [2.5]), so the final result is the
same i.e. the coupling is refocused.

2.4.3.3 Summary

In heteronuclear systems it is possible to choose whether or not to allow the
offset and the coupling to evolve; this gives great freedom in generating and
manipulating anti-phase states which play a key role in multiple pulse NMR
experiments.

���� 0XOWLSOH�TXDQWXP�WHUPV

2.5.1 Coherence order

In NMR the directly observable quantity is the transverse magnetization,
which in product operators is represented by terms such as I1x and 2I1zI2y.
Such terms are examples of single quantum coherences, or more generally
coherences with order, p, = ±1.  Other product operators can also be
classified according to coherence order e.g. 2I1zI2z has p = 0 and 2I1xI2y has
both p = 0 (zero-quantum coherence) and ±2 (double quantum coherence).
Only single quantum coherences are observable.

In heteronuclear systems it is sometimes useful to classify operators
according to their coherence orders with respect to each spin.  So, for
example, 2I1zI2y has p = 0 for spin 1 and p = ±1 for spin 2.
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2.5.2 Raising and lowering operators

The classification of operators according to coherence order is best
carried out be re-expressing the Cartesian operators Ix and Iy in terms of the
raising and lowering operators, I+  and I–, respectively.  These are defined as
follows

I I iI I I iIx y x y+ −= + = − [2.6]

where i is the square root of –1 (further details of why these operators are
called the raising and lowering operators will be given in lecture 1).  I+ has
coherence order +1 and I– has coherence order –1; coherence  order is a
signed quantity.

Using the definitions of Eqn. [2.6] Ix and Iy can be expressed in terms of
the raising and lowering operators

( ) ( )I I I I I Ix y i= + =+ − + −
1
2

1
2 – [2.7]

from which it is seen that Ix and Iy are both mixtures of coherences with p =
+1 and –1.

The operator product 2I1xI2x can be expressed in terms of the raising and
lowering operators in the following way (note that separate operators are
used for each spin: I1± and I2±)

( ) ( )
( ) ( )

2 21 2
1
2 1 1

1
2 2 2

1
2 1 2 1 2

1
2 1 2 1 2

I I I I I I

I I I I I I I I

x x = × + × +

= + + +
+ − + −

+ + − − + − − +

[2.8]

The first term on the right of Eqn. [2.8] has p = (+1+1) = 2 and the second
term has p = (–1–1) = –2; both are double quantum coherences.  The third
and fourth terms both have p = (+1–1) = 0 and are zero quantum coherences.
The value of p can be found simply by noting the number of raising and
lowering operators in the product.

The pure double quantum part of 2I1xI2x is, from Eqn. [2.8],

[ ] ( )double quantum part 2 1 2
1
2 1 2 1 2I I I I I Ix x = ++ + − − [2.9]

The raising and lowering operators on the right of Eqn. [2.9] can be re-
expressed in terms of the Cartesian operators:

( ) ( )( ) ( )( )[ ]
[ ]

1
2 1 2 1 2

1
2 1 1 2 2 1 1 2 2

1
2 1 2 1 22 2

I I I I I iI I iI I iI I iI

I I I I

x y x y x y x y

x x y y

+ + − −+ = + + + − −

= +
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So, the pure double quantum part of 2I1xI2x is ( )1
2 1 2 1 22 2I I I Ix x y y+ ; by a

similar method the pure zero quantum part can be shown to be

( )1
2 1 2 1 22 2I I I Ix x y y− .  Some further useful relationships are given in section

2.9

2.5.3 Definition of coherence order

The formal definition of coherence order depends on the response of a
particular operator to a rotation about the z-axis.  A coherence or operator of
order p acquires a phase pφ when rotated about the z-axis through an angle
φ:

( ) ( ) ( )σ σ φφp z p iprotate by  about  → −exp

This property will be used extensively as part of the description of
coherence selection by phase cycling or gradient pulses, lecture 4.

���� 7KUHH�VSLQV

The product operator formalism can be extended to three or more spins.  No
really new features arise, but some of the key ideas will be highlighted in
this section.  The description will assume that spin 1 is coupled to spins 2
and 3 with coupling constants  J12 and J13; in the diagrams it will be
assumed that J12 > J13.

2.6.1 Types of operators

I1x represents in-phase magnetization on spin 1; 2I1xI2z represents
magnetization anti-phase with respect to the coupling to spin 2 and 2I1xI3z

represents magnetization anti-phase  with respect to the coupling to spin 3.
4I1xI2zI3z represents magnetization which is doubly anti-phase with respect to
the couplings to both spins 2 and 3.

spin 2
spin 3

J12

J13

1

The doublet of doublets from
spin 1 coupled to two other
spins.  The spin states of the
coupled spins are also
indicated.
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As in the case of two spins, the presence of more than one transverse
operator in the product represents multiple quantum coherence.  For
example, 2I1xI2x is a mixture of double- and zero-quantum coherence
between spins 1 and 2.  The product 4I1xI2xI3z is the same mixture, but anti-
phase with respect to the coupling to spin 3.  Products such as 4I1xI2xI3x

contain, amongst other things, triple-quantum coherences.

2.6.2 Evolution

Evolution under offsets and pulses is simply a matter of applying
sequentially the relevant rotations for each spin, remembering that rotations
of spin 1 do not affect operators of spins 2 and 3.  For example, the term
2I1xI2z evolves under the offset in the following way:

2 2 21 2 1 1 2 1 1 2
1 1 2 2 3 3I I t I I t I Ix z
tI tI tI

x z y z
z z zΩ Ω Ω Ω Ω →  →  → +cos sin

The first arrow, representing evolution under the offset of spin 1, affects
only the spin 1 operator I1x.  The second arrow has no effect as the spin 2
operator I2z and this is unaffected by a z-rotation.  The third arrow also has
no effect as there are no spin 3 operators present.

The evolution under coupling follows the same rules as for a two-spin
system.  For example, evolution of I1x under the influence of the coupling to
spin 3 generates 2I1yI3z

I J t I J t I Ix

J tI I

x y z
z z

1
2

13 1 13 1 3
13 1 3 2

π π π → +cos sin

Further evolution of the term 2I1y I3z under the influence of the coupling to
spin 2 generates a double anti-phase term

2 2 41 3
2

12 1 3 13 1 2 3
12 1 2I I J t I I J t I I Iy z

J tI I
y z x z z

z zπ π π → −cos sin

In this evolution the spin 3 operator if unaffected as the coupling does not
involve this spin.  The connection with the evolution of I1y under a coupling
can be made more explicit by writing 2I3z as a "constant" γ

γ π γ π γπI J t I J t I Iy
J tI I

y x z
z z

1
2

12 1 13 1 2
12 1 2 2 → −cos sin

which compares directly to

I J t I J t I Iy
J tI I

y x z
z z

1
2

12 1 13 1 2
12 1 2 2π π π → −cos sin

I1x

2I1xI2z

2I1xI3z

4I1xI2zI3z

Representations of different
types of operators.
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���� $OWHUQDWLYH�QRWDWLRQ

In this chapter different spins have been designated with a subscript 1, 2, 3
...  Another common notation is to distinguish the spins by using a different
letter to represent their operators; commonly I and S are used for two of the
symbols

2 21 2I I I Sx z x z≡

Note that the order in which the operators are written is not important,
although it is often convenient (and tidy) always to write them in the same
sequence.

In heteronuclear experiments a notation is sometimes used where the
letter represents the nucleus.  So, for example, operators referring to protons
are given the letter H, carbon-13 atoms the letter C and nitrogen-15 atoms
the letter N; carbonyl carbons are sometimes denoted C’.  For example,
4CxHzNz denotes magnetization on carbon-13 which is anti-phase with
respect to coupling to both proton and nitrogen-15.

���� &RQFOXVLRQ

The product operator method as described here only applies to spin-half
nuclei.  It can be extended to higher spins, but significant extra complexity
is introduced; details can be found in the article by Sørensen et al. (Prog.
NMR Spectrosc. 16, 163 (1983)).

The main difficulty with the product operator method is that the more
pulses and delays that are introduced the greater becomes the number of
operators and the more complex the trigonometrical expressions multiplying
them.  If pulses are either 90° or 180° then there is some simplification as
such pulses do not increase the number of terms.  As will be seen in lecture
3, it is important to try to simplify the calculation as much as possible, for
example by recognizing when offsets or couplings are refocused by spin
echoes.

A number of computer programs are available for machine computation
using product operators within programs such as Mathematica or Maple.
These can be very labour saving.
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2.9.1 Multiple-quantum terms

In the product operator representation of multiple quantum coherences it is
usual to distinguish between active and passive spins.  Active spins
contribute transverse operators, such as Ix, Iy and I+, to the product; passive
spins contribute only z-operators, Iz.  In a sense the spins contributing
transverse operators are "involved" in the coherence, while those
contributing z-operators are simply spectators.

For double- and zero-quantum coherence in which spins i and j are active
it is convenient to define the following set of operators which represent pure
multiple quantum states of given order.  The operators can be expressed in
terms of the Cartesian or raising and lowering operators.

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

double quantum,  

DQ

DQ

zero quantum,  

ZQ

ZQ

p

I I I I I I I I

I I I I I I I I

p

I I I I I I I I

I I I I I I I I

x
ij

ix jx iy jy i j i j

y
ij

ix jy iy jx i i j i j

x
ij

ix jx iy jy i j i j

y
ij

iy jx ix jy i i j i j

= ±

≡ − ≡ +

≡ + ≡ −

=

≡ + ≡ +

≡ − ≡ −

+ + − −

+ + − −

+ − − +

+ − − +

2

2 2

2 2

0

2 2

2 2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

2.9.2 Evolution of multiple -quantum terms

2.9.2.1 Evolution under offsets

The double- and zero-quantum operators evolve under offsets in a way
which is entirely analogous to the evolution of Ix and Iy under free
precession except that the frequencies of evolution are (Ωi + Ωj) and (Ωi –
Ωj) respectively:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

DQ DQ DQ

DQ DQ DQ

ZQ ZQ ZQ

ZQ ZQ

x
ij tI tI

i j x
ij

i j y
ij

y
ij tI tI

i j y
ij

i j x
ij

x
ij tI tI

i j x
ij

i j y
ij

y
ij tI tI

i j y
ij

i

i iz j jz

i iz j jz

i iz j jz

i iz j jz

t t

t t

t t

t

Ω Ω

Ω Ω

Ω Ω

Ω Ω

Ω Ω Ω Ω

Ω Ω Ω Ω

Ω Ω Ω Ω

Ω Ω Ω

+

+

+

+

 → + + +

 → + − +

 → − + −

 → − −

cos sin

cos sin

cos sin

cos sin( ) ( )− Ω j x
ijt ZQ

2.9.2.2 Evolution under couplings

Multiple quantum coherence between spins i and j does not evolve under the
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influence of the coupling between the two active spins, i and j.

Double- and zero-quantum operators evolve under passive couplings in a
way which is entirely analogous to the evolution of Ix and Iy; the resulting
multiple quantum terms can be described as being anti-phase with respect to
the effective couplings:

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

DQ DQ DQ

DQ DQ DQ

ZQ ZQ ZQ

ZQ ZQ ZQ

DQ,eff DQ,eff

DQ,eff DQ,eff

ZQ,eff ZQ,eff

ZQ,eff ZQ,eff

x
ij

x
ij

kz y
ij

y
ij

y
ij

kz x
ij

x
ij

x
ij

kz y
ij

y
ij

y
ij

kz x
ij

J t J t I

J t J t I

J t J t I

J t J t I

 → +

 → −

 → +

 → −

cos cos

cos sin

cos sin

cos sin

π π

π π

π π

π π

2

2

2

2

JDQ,eff is the sum of the couplings between spin i and all other spins plus the

sum of the couplings between spin j and all other spins. JZQ,eff is the sum of

the couplings between spin i and all other spins minus the sum of the
couplings between spin j and all other spins.

For example in a three-spin system the zero-quantum coherence  between
spins 1 and 2, anti-phase with respect to spin 3, evolves according to

( ) ( ) ( )2 23
12

3
12 12

12 23

I J t I J t

J J J
z y z y xZQ ZQ ZQ

where  
ZQ,eff ZQ,eff

ZQ,eff

 → −
= −

cos sinπ π

Further details of multiple-quantum evolution can be found in section 5.3
of Ernst, Bodenhausen and Wokaun Principles of NMR in One and Two
Dimensions (Oxford University Press, 1987).
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3 Basic concepts for
two-dimensional NMR

���� ,QWURGXFWLRQ

The basic ideas of two-dimensional NMR will be introduced by reference to
the appearance of a COSY spectrum; later in this lecture the product
operator formalism will be used to predict the form of the spectrum.

Conventional NMR spectra (one-dimensional spectra) are plots of
intensity vs. frequency; in two-dimensional spectroscopy intensity is plotted
as a function of two frequencies, usually called F1 and F2.  There are various
ways of representing such a spectrum on paper, but the one most usually
used is to make a contour plot in which the intensity of the peaks is
represented by contour lines drawn at suitable intervals, in the same way as a
topographical map.  The position of each peak is specified by two frequency
co-ordinates corresponding to F1 and F2.  Two-dimensional NMR spectra
are always arranged so that the F2 co-ordinates of the peaks correspond to
those found in the normal one-dimensional spectrum, and this relation is
often emphasized by plotting the one-dimensional spectrum alongside the F2

axis.
The figure shows a schematic COSY spectrum of a hypothetical molecule

containing just two protons, A and X, which are coupled together.  The one-
dimensional spectrum is plotted alongside the F2 axis, and consists of the
familiar pair of doublets centred on the chemical shifts of A and X, δA and
δX respectively.  In the COSY spectrum, the F1 co-ordinates of the peaks in
the two-dimensional spectrum also correspond to those found in the normal
one-dimensional spectrum and to emphasize this point the one-dimensional
spectrum has been plotted alongside the F1 axis.  It is immediately clear that
this COSY spectrum has some symmetry about the diagonal F1 = F2 which
has been indicated with a dashed line.

In a one-dimensional spectrum scalar couplings give rise to multiplets in
the spectrum.  In two-dimensional spectra the idea of a multiplet has to be
expanded somewhat so that in such spectra a multiplet consists of an array
of individual peaks often giving the impression of a square or rectangular
outline.  Several such arrays of peaks can be seen in the schematic COSY
spectrum shown above.  These two-dimensional multiplets come in two
distinct types: diagonal-peak multiplets which are centred around the same
F1 and F2 frequency co-ordinates and cross-peak multiplets which are
centred around different F1 and F2 co-ordinates.  Thus in the schematic
COSY spectrum there are two diagonal-peak multiplets centred at
F1 = F2 = δA and F1 = F2 = δX, one cross-peak multiplet centred at F1 = δA,
F2 = δX and a second cross-peak multiplet centred at F1 = δX, F2 = δA.

The appearance in a COSY spectrum of a cross-peak multiplet F1 = δA,
F2 = δX indicates that the two protons at shifts δA and δX have a scalar
coupling between them.  This statement is all that is required for the analysis
of a COSY spectrum, and it is this simplicity which is the key to the great
utility of such spectra.  From a single COSY spectrum it is possible to trace
out the whole coupling network in the molecule.

A

A

X

X

Schematic COSY spectrum for
two coupled spins, A and X
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3.1.1 General Scheme for two-Dimensional NMR

In one-dimensional pulsed Fourier transform NMR the signal is recorded as
a function of one time variable and then Fourier transformed to give a
spectrum which is a function of one frequency variable.  In two-dimensional
NMR the signal is recorded as a function of two time variables, t1 and t2, and
the resulting data Fourier transformed twice to yield a spectrum which is a
function of two frequency variables.  The general scheme for two-
dimensional spectroscopy is

evolution detection

t1 t2

In the first period, called the preparation time, the sample is excited by
one or more pulses.  The resulting magnetization is allowed to evolve for the
first time period, t1.  Then another period follows, called the mixing time,
which consists of a further pulse or pulses.  After the mixing period the
signal is recorded as a function of the second time variable, t2.  This
sequence of events is called a pulse sequence and the exact nature of the
preparation and mixing periods determines the information found in the
spectrum.

It is important to realize that the signal is not recorded during the time t1,
but only during the time t2 at the end of the sequence.  The data is recorded
at regularly spaced intervals in both t1 and t2.

The two-dimensional signal is recorded in the following way.  First, t1 is
set to zero, the pulse sequence is executed and the resulting free induction
decay recorded.  Then the nuclear spins are allowed to return to equilibrium.
t1 is then set to ∆1, the sampling interval in t1, the sequence is repeated and a
free induction decay is recorded and stored separately from the first.  Again
the spins are allowed to equilibrate, t1 is set to 2∆1, the pulse sequence
repeated and a free induction decay recorded and stored.  The whole process
is repeated again for t1 = 3∆1, 4∆1 and so on until sufficient data is recorded,
typically 50 to 500 increments of t1.  Thus recording a two-dimensional data
set involves repeating a pulse sequence for increasing values of t1 and
recording a free induction decay as a function of t2 for each value of t1.

3.1.2 Interpretation of peaks in a two-dimensional spectrum

Within the general framework outlined in the previous section it is now
possible to interpret the appearance of a peak in a two-dimensional spectrum
at particular frequency co-ordinates.



3–3

a b c

20

90

F1

F20,0

Suppose that in some unspecified two-dimensional spectrum a peak appears
at F1 = 20 Hz, F2 = 90 Hz (spectrum a above)  The interpretation of this
peak is that a signal was present during t1 which evolved with a frequency of
20 Hz.  During the mixing time this same signal was transferred in some
way to another signal which evolved at 90 Hz during t2.

Likewise, if there is a peak at F1 = 20 Hz, F2 = 20 Hz (spectrum b) the
interpretation is that there was a signal evolving at 20 Hz during t1 which
was unaffected by the mixing period and continued to evolve at 20 Hz
during t2.  The processes by which these signals are transferred will be
discussed in the following sections.

Finally, consider the spectrum shown in c.  Here there are two peaks, one
at F1 = 20 Hz, F2 = 90 Hz and one at F1 = 20 Hz, F2 = 20 Hz.  The
interpretation of this is that some signal was present during t1 which evolved
at 20 Hz and that during the mixing period part of it was transferred into
another signal which evolved at 90 Hz during t2.  The other part remained
unaffected and continued to evolve at 20 Hz.  On the basis of the previous
discussion of COSY spectra, the part that changes frequency during the
mixing time is recognized as leading to a cross-peak and the part that does
not change frequency leads to a diagonal-peak.  This kind of interpretation is
a very useful way of thinking about the origin of peaks in a two-dimensional
spectrum.

It is clear from the discussion in this section that the mixing time plays a
crucial role in forming the two-dimensional spectrum.  In the absence of a
mixing time, the frequencies that evolve during t1 and t2 would be the same
and only diagonal-peaks would appear in the spectrum.  To obtain an
interesting and useful spectrum it is essential to arrange for some process
during the mixing time to transfer signals from one spin to another.

���� (;6<�DQG�12(6<�VSHFWUD�LQ�GHWDLO

In this section the way in which the EXSY (EXchange SpectroscopY)
sequence works will be examined; the pulse sequence is shown opposite.
This experiment gives a spectrum in which a cross-peak at frequency co-
ordinates F1 = δA, F2 = δB indicates that the spin resonating at δA is
chemically exchanging with the spin resonating at δB.

The pulse sequence for EXSY is shown opposite.  The effect of the
sequence will be analysed for the case of two spins, 1 and 2, but without any
coupling between them.  The initial state, before the first pulse, is
equilibrium magnetization, represented as I1z + I2z; however, for simplicity
only magnetization from the first spin will be considered in the calculation.

t1 t2mix

The pulse sequence for EXSY
(and NOESY).  All pulses have
90° flip angles.
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The first 90° pulse (of phase x) rotates the magnetization onto –y

I Iz
I I

y
x x

1
2 2

1
1 2π π →  → −

(the second arrow has no effect as it involves operators of spin 2).  Next
follows evolution for time t1

−  →  → − +I t I t Iy
t I t I

y x
z z

1 1 1 1 1 1 1
1 1 1 2 1 2Ω Ω Ω Ωcos sin

again, the second arrow has no effect.  The second 90° pulse turns the first
term onto the z-axis and leaves the second term unaffected

−  →  → −

 →  →

cos cos

sin sin

Ω Ω

Ω Ω
1 1 1

2 2
1 1 1

1 1 1
2 2

1 1 1

1 2

1 2

t I t I

t I t I

y
I I

z

x
I I

x

x x

x x

π π

π π

Only the I1z term leads to cross-peaks by chemical exchange, so the other
term will be ignored (in an experiment this is achieved by appropriate
coherence pathway selection – see lecture 4).  The effect of the first part of
the sequence is to generate, at the start of the mixing time, τmix, some z-
magnetization on spin 1 whose size depends, via the cosine term, on t1 and
the frequency, Ω1, with which the spin 1 evolves during t1.  The
magnetization is said to be frequency labelled.

During the mixing time, τmix, spin 1 may undergo chemical exchange
with spin 2.  If it does this, it carries with it the frequency label that it
acquired during t1.  The extent to which this transfer takes place depends on
the details of the chemical kinetics; it will be assumed simply that during
τmix a fraction f of the spins of type 1 chemically exchange with spins of type
2.  The effect of the mixing process can then be written

( )−  → − − −cos cos cosΩ Ω Ω1 1 1 1 1 1 1 1 21t I f t I f t Iz z z
mixing

The final 90° pulse rotates this z-magnetization back onto the y-axis

( ) ( )− −  →  → −

−  →  →

1 11 1 1
2 2

1 1 1

1 1 2
2 2

1 1 2

1 2

1 2

f t I f t I

f t I f t I

z
I I

y

z
I I

y

x x

x x

cos cos

cos cos

Ω Ω

Ω Ω

π π

π π

Although the magnetization started on spin 1, at the end of the sequence
there is magnetization present on spin 2 – a process called magnetization
transfer.  The analysis of the experiment is completed by allowing the I1y

and I2y operators to evolve for time t2.
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( )
( ) ( )

1

1 1

1 1 1

1 2 1 1 1 1 2 1 1 1

1 1 2

2 2 1 1 2 2 2 1 1 2

1 2 1 2 2 2

1 2 1 2 2 2

−  →  →

− − −

 →  →
−

f t I

f t t I f t t I

f t I

f t t I f t t I

y
t I t I

y x

y
t I t I

y x

z z

z z

cos

cos cos sin cos

cos

cos cos sin cos

Ω

Ω Ω Ω Ω

Ω
Ω Ω Ω Ω

Ω Ω

Ω Ω

If it is assumed that the y-magnetization is detected during t2 (this is an
arbitrary choice, but a convenient one), the time domain signal has two
terms:

( )1 1 2 1 1 2 2 1 1− +f t t f t tcos cos cos cosΩ Ω Ω Ω

The crucial thing is that the amplitude of the signal recorded during t2 is
modulated by the evolution during t1.  This can be seen more clearly by
imagining the Fourier transform, with respect to t2, of the above function.
The cos(Ω1t2) and cos(Ω2t2) terms transform to give absorption mode
signals centred at Ω1 and Ω2 respectively in the F2 dimension; these are

denoted ( )A1
2  and ( )A2

2  (the subscript indicates which spin, and the
superscript which dimension).  The time domain function becomes

( ) ( ) ( )1 1
2

1 1 2
2

1 1− +f A t fA tcos cosΩ Ω

If a series of spectra recorded as t1 progressively increases are inspected it
would be found that the cos(Ω1t2) term causes a change in size of the peaks
at Ω1 and Ω2 – this is the modulation referred to above.

Fourier transformation with respect to t1 gives peaks with an absorption
lineshape, but this time in the F1 dimension; an absorption mode signal at

Ω1 in F1 is denoted ( )A1
1 .  The time domain signal becomes, after Fourier

transformation in each dimension

( ) ( ) ( ) ( ) ( )1 2
1

1
1

2
2

1
1− +f A A fA A
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Thus, the final two-dimensional spectrum is predicted to have two peaks.
One is at (F1, F2) = (Ω1, Ω1) – this is a diagonal peak and arises from those
spins of type 1 which did not undergo chemical exchange during τmix.  The
second is at (F1, F2) = (Ω1, Ω2) – this is a cross peak which indicates that
part of the magnetization from spin 1 was transferred to spin 2 during the
mixing time.  It is this peak that contains the useful information.  If the
calculation were repeated starting with magnetization on spin 2 it would be
found that there are similar peaks at (Ω2, Ω2) and (Ω2, Ω1).

The NOESY (Nuclear Overhauser Effect SpectrocopY) spectrum is
recorded using the same basic sequence.  The only difference is that during
the mixing time the cross-relaxation is responsible for the exchange of
magnetization between different spins.  Thus, a cross-peak indicates that
two spins are experiencing mutual cross-relaxation and hence are close in
space.

Having completed the analysis it can now be seen how the
EXCSY/NOESY sequence is put together.  First, the 90° – t1 – 90° sequence
is used to generate frequency labelled z-magnetization.  Then, during τmix,
this magnetization is allowed to migrate to other spins, carrying its label
with it.  Finally, the last pulse renders the z-magnetization observable.

���� 0RUH�DERXW�WZR�GLPHQVLRQDO�WUDQVIRUPV

From the above analysis it was seen that the signal observed during t2 has
an amplitude proportional to cos(Ω1t1); the amplitude of the signal observed
during t2 depends on the evolution during t1.  For the first increment of t1

(t1 = 0), the signal will be a maximum, the second increment will have size
proportional to cos(Ω1∆1), the third proportional to cos(Ω12∆1), the fourth to
cos(Ω13∆1) and so on.  This modulation of the amplitude of the observed
signal by the t1 evolution is illustrated in the figure below.

In the figure the first column shows a series of free induction decays that
would be recorded for increasing values of t1 and the second column shows
the Fourier transforms of these signals.  The final step in constructing the
two-dimensional spectrum is to Fourier transform the data along the t1

dimension.  This process is also illustrated in the figure.  Each of the spectra
shown in the second column are represented as a series of data points, where
each point corresponds to a different F2 frequency.  The data point
corresponding to a particular F2 frequency is selected from the spectra for
t1 = , t1 = ∆1, t1 = 2∆1 and so on for all the t1 values.  Such a process results
in a function, called an interferogram, which has t1 as the running variable.

Fourier
transform

time

frequency

The Fourier transform of a
decaying cosine function
cosΩt exp(–t/T2) is an
absorption mode Lorentzian
centred at frequency Ω.
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Several interferograms, labelled a to g, computed for different F2

frequencies are shown in the third column of the figure.  The particular F2

frequency that each interferogram corresponds to is indicated in the bottom
spectrum of the second column.  The amplitude of the signal in each
interferogram is different, but in this case the modulation frequency is the
same.  The final stage in the processing is to Fourier transform these
interferograms to give the series of spectra which are shown in the right
most column of the figure.  These spectra have F1 running horizontally and

Illustration of how the modulation of a free induction decay by evolution during t1 gives rise to a peak in
the two-dimensional spectrum.  In the left most column is shown a series of free induction decays that
would be recorded for successive values of t1; t1 increases down the page.  Note how the amplitude of
these free induction decays varies with t1, something that becomes even plainer when the time domain
signals are Fourier transformed, as shown in the second column.  In practice, each of these F2 spectra
in column two consist of a series of data points.  The data point at the same frequency in each of these
spectra is extracted and assembled into an interferogram, in which the horizontal axis is the time t1.
Several such interferograms, labelled a to g, are shown in the third column.  Note that as there were
eight F2 spectra in column two corresponding to different t1 values there are eight points in each
interferogram.  The F2 frequencies at which the interferograms are taken are indicated on the lower
spectrum of the second column.  Finally, a second Fourier transformation of these interferograms gives
a series of F1 spectra shown in the right hand column.  Note that in this column F2 increases down the
page, whereas in the first column t1 increase down the page.  The final result is a two-dimensional
spectrum containing a single peak.
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F2 running down the page.  The modulation of the time domain signal has
been transformed into a single two-dimensional peak.  Note that the peak
appears on several traces corresponding to different F2 frequencies because
of the width of the line in F2.

The time domain data in the t1 dimension can be manipulated by
multiplying by weighting functions or zero filling, just as with conventional
free induction decays.

���� 7ZR�GLPHQVLRQDO� H[SHULPHQWV� XVLQJ� FRKHUHQFH� WUDQVIHU
WKURXJK�-�FRXSOLQJ

Perhaps the most important set of two-dimensional experiments are those
which transfer magnetization from one spin to another via the scalar
coupling between them.  As was seen in section 2.3.3, this kind of transfer
can be brought about by the action of a pulse on an anti-phase state.  In
outline the basic process is

I I I I Ix y z
x

z y1 1 2 1 22 2coupling 90 ( ) to both spins

                     spin 1 spin 2

 →  →°

3.4.1 COSY

The pulse sequence for this experiment is shown opposite.  It will be
assumed in the analysis that all of the pulses are applied about the x-axis and
for simplicity the calculation will start with equilibrium magnetization only
on spin 1.  The effect of the first pulse is to generate y-magnetization, as has
been worked out previously many times

I Iz
I I

y
x x

1
2 2

1
1 2π π →  → −

This state then evolves for time t1, first under the influence of the offset of
spin 1 (that of spin 2 has no effect on spin 1 operators):

−  → − +I t I t Iy
t I

y x
z

1 1 1 1 1 1 1
1 1 1Ω Ω Ωcos sin

Both terms on the right then evolve under the coupling

−  → − +

 → +

cos cos cos sin cos

sin cos sin sin sin

Ω Ω Ω

Ω Ω Ω
1 1 1

2
12 1 1 1 1 12 1 1 1 1 2

1 1 1
2

12 1 1 1 1 12 1 1 1 1 2

12 1 1 2

12 1 1 2

2

2

t I J t t I J t t I I

t I J t t I J t t I I

y
J t I I

y x z

x
J t I I

x y z

z z

z z

π

π

π π

π π

That completes the evolution under t1.  Now all that remains is to consider
the effect of the final pulse, remembering that the effect of the pulse on both
spins needs to be computed.  Taking the terms one by one:

t1 t2

Pulse sequence for the two-
dimensional COSY experiment
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{ }
{ }

−  →  → −

 →  → −

 →  →
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sin cos sin cos

cos sin cos sin
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J t t I J t t I
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12 1 1 1 1 2
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12 1 1 1 1 2

12 1 1 1 1
2 2

12 1 1 1 1

1 2

1 2

1 2

1

2 2 2

Ω Ω

Ω Ω

Ω Ω { }
{ }
3

2 2 412 1 1 1 1 2
2 2

12 1 1 1 1 2
1 2sin sin sin sinπ ππ πJ t t I I J t t I Iy z

I I
z y

x xΩ Ω →  → −

Terms {1} and {2} are unobservable.  Term {3} corresponds to in-phase
magnetization of spin 1, aligned along the x-axis.  The t1 modulation of this
term depends on the offset of spin 1, so a diagonal peak centred at (Ω1,Ω1) is
predicted.  Term {4} is the really interesting one.  It shows that anti-phase
magnetization on spin 1, 2I1yI2z, is transferred to anti-phase magnetization
on spin 2, 2I1zI2y; this is an example of coherence transfer.  Term {4}
appears as observable magnetization on spin 2, but it is modulated in t1 with
the offset of spin 1, thus it gives rise to a cross-peak centred at (Ω1,Ω2).  It
has been shown, therefore, how cross- and diagonal-peaks arise in a COSY
spectrum.

Some more consideration should be give to the form of the cross- and
diagonal peaks.  Consider again term {3}: it will give rise to an in-phase
multiplet in F2, and as it is along the x-axis, the lineshape will be dispersive.
The form of the modulation in t1 can be expanded, using the formula,

( ) ( ){ }cos sin sin sinA B B A B A= + + −1
2 to give

( ) ( ){ }cos sin sin sinπ π πJ t t t J t t J t12 1 1 1
1
2 1 1 12 1 1 1 12Ω Ω Ω= + + −

Two peaks in F1 are expected at Ω1 ± πJ12, these are just the two lines of the
spin 1 doublet.  In addition, since these are sine modulated they will have
the dispersion lineshape.  Note that both components in the spin 1 multiplet
observed in F2 are modulated in this way, so the appearance of the two-
dimensional multiplet can best be found by "multiplying together" the
multiplets in the two dimensions, as shown opposite. In addition, all four
components of the diagonal-peak multiplet have the same sign, and have the
double dispersion lineshape illustrated below

Term {4} can be treated in the same way.  In F2 we know that this term

Fourier
transform

time

frequency

The Fourier transform of a
decaying sine function
sinΩt exp(–t/T2) is a dispersion
mode Lorentzian centred at
frequency Ω.

F1

F2

J12

J12

Schematic view of the diagonal
peak from a COSY spectrum.
The squares are supposed to
indicate the two-dimensional
double dispersion lineshape
illustrated below

The double dispersion lineshape seen in pseudo 3D and as a contour plot; negative contours are
indicated by dashed lines.
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gives rise to an anti-phase absorption multiplet on spin 2.  Using the
relationship ( ) ( ){ }sin sin cos cosB A B A B A= − + + −1

2  the modulation in t1

can be expanded

( ) ( ){ }sin sin cos cosπ π πJ t t t J t t J t12 1 1
1
2 1 1 12 1 1 1 12Ω Ω Ω= − + + −

Two peaks in F1, at Ω1 ± πJ12, are expected; these are just the two lines of
the spin 1 doublet.  Note that the two peaks have opposite signs – that is
they are anti-phase in F1.  In addition, since these are cosine modulated we
expect the absorption lineshape (see section 3.2).  The form of the cross-
peak multiplet can be predicted by "multiplying together" the F1 and F2

multiplets, just as was done for the diagonal-peak multiplet.  The result is
shown opposite.  This characteristic pattern of positive and negative peaks
that constitutes the cross-peak is know as an anti-phase square array.

COSY spectra are sometimes plotted in the absolute value mode, where
all the sign information is suppressed deliberately.  Although such a display
is convenient, especially for routine applications, it is generally much more
desirable to retain the sign information.  Spectra displayed in this way are
said to be phase sensitive; more details of this are given in section 3.6.

As the coupling constant becomes comparable with the linewidth, the
positive and negative peaks in the cross-peak multiplet begin to overlap and
cancel one another out.  This leads to an overall reduction in the intensity of
the cross-peak multiplet, and ultimately the cross-peak disappears into the
noise in the spectrum.  The smallest coupling which gives rise to a cross-
peak is thus set by the linewidth and the signal-to-noise ratio of the
spectrum.

3.4.2 Double-quantum filtered COSY (DQF COSY)

The conventional COSY experiment suffers from a disadvantage which
arises from the different phase properties of the cross- and diagonal-peak
multiplets.  The components of a diagonal peak multiplet are all in-phase
and so tend to reinforce one another.  In addition, the dispersive tails of
these peaks spread far into the spectrum.  The result is a broad intense
diagonal which can obscure nearby cross-peaks.  This effect is particularly
troublesome when the coupling is comparable with the linewidth as in such

F1

F2

J12

J12

Schematic view of the cross-
peak multiplet from a COSY
spectrum. The circles are
supposed to indicate the two-
dimensional double absorption
lineshape illustrated below;
filled circles represent positive
intensity, open represent
negative intensity.

The double absorption lineshape seen in pseudo 3D and as a contour plot.
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cases, as was described above, cancellation of anti-phase components in the
cross-peak multiplet reduces the overall intensity of these multiplets.

This difficulty is neatly side-stepped by a modification called double
quantum filtered COSY (DQF COSY).  The pulse sequence is shown
opposite.

Up to the second pulse the sequence is the same as COSY.  However, it
is arranged that only double-quantum coherence present during the (very
short) delay between the second and third pulses is ultimately allowed to
contribute to the spectrum.  Hence the name, "double-quantum filtered", as
all the observed signals are filtered through double-quantum coherence.  The
final pulse is needed to convert the double quantum coherence back into
observable magnetization.  This double-quantum derived signal is selected
by the use of coherence pathway selection using phase cycling or field
gradient pulses, further details of which will be given in lecture 4.

In the analysis of the COSY experiment, it is seen that after the second
90° pulse it is term {2} that contains double-quantum coherence; this can be
demonstrated explicitly by expanding this term in the raising and lowering
operators, as was done in section 2.5

( ) ( )
( ) ( )

2 21 2
1
2 1 1

1
2 2 2

1
2 1 2 1 2

1
2 1 2 1 2

I I I I I I

I I I I I I I I

x y i

i i

= × + × −

= − + − +

+ − + −

+ + − − + − − +

This term contains both double- and zero-quantum coherence.  The pure
double-quantum part is the term in the first bracket on the right; this term
can be re-expressed in Cartesian operators:

( ) ( )( ) ( )( )[ ]
[ ]

1
2 1 2 1 2

1
2 1 1 1 1 2 2 2 2

1
2 1 2 1 22 2

i i x y x y x y x y

x y y x

I I I I I iI I iI I iI I iI

I I I I

+ + − −− = + + + − −

= +

The effect of the last 90°(x) pulse on the double quantum part of term {2} is
thus

( )
( )

− +  →  →

− +

1
2 12 1 1 1 1 2 1 2

2 2

1
2 12 1 1 1 1 2 1 2

2 2

2 2

1 2sin cos

sin cos

π

π

π πJ t t I I I I

J t t I I I I

x y y x
I I

x z z x

x xΩ

Ω

The first term on the right is anti-phase magnetization of spin 1 aligned
along the x-axis; this gives rise to a diagonal-peak multiplet.  The second
term is anti-phase magnetization of spin 2, again aligned along x; this will
give rise to a cross-peak multiplet.  Both of these terms have the same
modulation in t1, which can be shown, by a similar analysis to that used
above, to lead to an anti-phase multiplet in F1.  As these peaks all have the
same lineshape the overall phase of the spectrum can be adjusted so that
they are all in absorption; see section 3.6 for further details.  In contrast to
the case of a simple COSY experiment both the diagonal- and cross-peak
multiplets are in anti-phase in both dimensions, thus avoiding the strong in-

t1 t2

The pulse sequence for DQF
COSY; the delay between the
last two pulses is usually just a
few microseconds.
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phase diagonal peaks found in the simple experiment.  The DQF COSY
experiment is the method of choice for tracing out coupling networks in a
molecule.

3.4.3 Heteronuclear correlation experiments

One particularly useful experiment is to record a two-dimensional spectrum
in which the co-ordinate of a peak in one dimension is the chemical shift of
one type of nucleus (e.g. proton) and the co-ordinate in the other dimension
is the chemical shift of another nucleus (e.g. carbon-13) which is coupled to
the first nucleus.  Such spectra are often called shift correlation maps or shift
correlation spectra.

The one-bond coupling between a carbon-13 and the proton directly
attached to it is relatively constant (around 150 Hz), and much larger than
any of the long-range carbon-13 proton couplings.  By utilizing this large
difference experiments can be devised which give maps of carbon-13 shifts
vs the shifts of directly attached protons.  Such spectra are very useful as
aids to assignment; for example, if the proton spectrum has already been
assigned, simply recording a carbon-13 proton correlation experiment will
give the assignment of all the protonated carbons.

Only one kind of nuclear species can be observed at a time, so there is a
choice as to whether to observe carbon-13 or proton when recording a shift
correlation spectrum.  For two reasons, it is very advantageous from the
sensitivity point of view to record protons.  First, the proton magnetization
is larger than that of carbon-13 because there is a larger separation between
the spin energy levels giving, by the Boltzmann distribution, a greater
population difference.  Second, a given magnetization induces a larger
voltage in the coil the higher the NMR frequency becomes.

Trying to record a carbon-13 proton shift correlation spectrum by proton
observation has one serious difficulty.  Carbon-13 has a natural abundance
of only 1%, thus 99% of the molecules in the sample do not have any
carbon-13 in them and so will not give signals that can be used to correlate
carbon-13 and proton.  The 1% of molecules with carbon-13 will give a
perfectly satisfactory spectrum, but the signals from these resonances will be
swamped by the much stronger signals from non-carbon-13 containing
molecules.  However, these unwanted signals can be suppressed using
coherence selection in a way which will be described below and which will
be further elaborated in lecture 4.

3.4.3.1 Heteronuclear multiple-quantum correlation (HMQC)

The pulse sequence for this popular experiment is given opposite.  The
sequence will be analysed for a coupled carbon-13 proton pair, where spin 1
will be the carbon-13 and spin 2 the proton.

The analysis will start with equilibrium magnetization on spin 1, I1z.  The
whole analysis can be greatly simplified by noting that the 180° pulse is
exactly midway between the first 90° pulse and the start of data acquisition.
As has been shown in section 2.4, such a sequence forms a spin echo and so
the evolution of the offset of spin 1 over the entire period (t1 + 2∆) is
refocused.  Thus the evolution of the offset of spin 1 can simply be ignored

t1

t2
1H

13C

∆ ∆

The pulse sequence for HMQC.
Filled rectangles represent 90°
pulses and open rectangles
represent 180° pulses.  The
delay ∆ is set to 1/(2J12).
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for the purposes of the calculation.

At the end of the delay ∆ the state of the system is simply due to
evolution of the term –I1y under the influence of the scalar coupling:

− +cos sinπ πJ I J I Iy x z12 1 12 1 22∆ ∆

It will be assumed that ∆ = 1/(2J12), so only the anti-phase term is present.
The second 90° pulse is applied to carbon-13 (spin 2) only

2 21 2
2

1 2
2I I I Ix z

I
x y

xπ → −

This pulse generates a mixture of heteronuclear double- and zero-quantum
coherence, which then evolves during t1.  In principle this term evolves
under the influence of the offsets of spins 1 and 2 and the coupling between
them.   However, it has already been noted that the offset of spin 1 is
refocused by the centrally placed 180° pulse, so it is not necessary to
consider evolution due to this term.  In addition, it can be shown that
multiple-quantum coherence involving spins i and j does not evolve under
the influence of the coupling, Jij, between these two spins (see appendix
x.x).  As a result of these two simplifications, the only evolution that needs
to be considered is that due to the offset of spin 2 (the carbon-13).

−  → − +2 2 21 2 2 1 1 2 2 1 1 2
2 1 2I I t I I t I Ix y
t I

x y x x
zΩ Ω Ωcos sin

The second 90° pulse to spin 2 (carbon-13) regenerates the first term on the
right into spin 1 (proton) observable magnetization; the other remains
unobservable

−  → −cos cosΩ Ω2 1 1 2
2

2 1 1 22 22t I I t I Ix y

I

x z
xπ

This term then evolves under the coupling, again it is assumed that
∆ = 1/(2J12)

( )−  → −=
cos cos

,Ω Ω∆ ∆
2 1 1 2

2 1 2

2 1 12 12 1 2 12t I I t Ix z

J I I J

y
z zπ

This is a very nice result; in F2 there will be an in-phase doublet centred at
the offset of spin 1 (proton) and these two peaks will have an F1 co-ordinate
simply determined by the offset of spin 2 (carbon-13); the peaks will be in
absorption.  A schematic spectrum is shown opposite.

The problem of how to suppress the very strong signals from protons not
coupled to any carbon-13 nuclei now has to be addressed.  From the point of
view of these protons the carbon-13 pulses might as well not even be there,
and the pulse sequence looks like a simple spin echo.  This insensitivity to
the carbon-13 pulses is the key to suppressing the unwanted signals.

1

2

F1

F2

J12

Schematic HMQC spectrum for
two coupled spins.
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Suppose that the phase of the first carbon-13 90° pulse is altered from x to –
x.  Working through the above calculation it is found that the wanted signal
from the protons coupled to carbon-13 changes sign i.e. the observed
spectrum will be inverted.  In contrast the signal from a proton not coupled
to carbon-13 will be unaffected by this change.  Thus, for each t1 increment
the free induction decay is recorded twice: once with the first carbon-13 90°
pulse set to phase x and once with it set to phase –x.  The two free induction
decays are then subtracted in the computer memory thus cancelling the
unwanted signals.  This is an example of a very simple phase cycle, more
details of which are given in lecture 4.

In the case of carbon-13 and proton the one bond coupling is so much
larger than any of the long range couplings that a choice of ∆ = 1/(2Jone bond)
does not give any correlations other than those through the one-bond
coupling.  There is simply insufficient time for the long-range couplings to
become anti-phase.  However, if ∆ is set to a much longer value (30 to 60
ms), long-range correlations will be seen.  Such spectra are very useful in
assigning the resonances due to quaternary carbon-13 atoms.  The
experiment is often called HMBC (heteronuclear multiple-bond correlation).

Now that the analysis has been completed it can be seen what the
function of various elements in the pulse sequence is.  The first pulse and
delay generate magnetization on proton which is anti-phase with respect to
the coupling to carbon-13.  The carbon-13 90° pulse turns this into multiple
quantum coherence.  This forms a filter through which magnetization not
bound to carbon-13 cannot pass and it is the basis of discrimination between
signals from protons bound and not bound to carbon-13.  The second
carbon-13 pulse returns the multiple quantum coherence to observable anti-
phase magnetization on proton.  Finally, the second delay ∆ turns the anti-
phase state into an in-phase state.  The centrally placed proton 180° pulse
refocuses the proton shift evolution for both the delays ∆ and t1.

3.4.3.2 Heteronuclear single-quantum correlation (HSQC)

This pulse sequence results in a spectrum identical to that found for HMQC.
Despite the pulse sequence being a little more complex than that for HMQC,
HSQC has certain advantages for recording the spectra of large molecules,
such a proteins.  The HSQC pulse sequence is often embedded in  much
more complex sequences which are used to record two- and three-
dimensional spectra of carbon-13 and nitrogen-15 labelled proteins.

t1

t2
∆
2

∆
2

∆
2

∆
2

A B C

1H

13C

y

If this sequence were to be analysed by considering each delay and pulse in
turn the resulting calculation would be far too complex to be useful.  A more
intelligent approach is needed where simplifications are used, for example

The pulse sequence for HSQC.  Filled rectangles represent 90° pulses and open rectangles represent
180° pulses.  The delay ∆ is set to 1/(2J12); all pulses have phase x unless otherwise indicated.
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by recognizing the presence of spin echoes who refocus offsets or couplings.
Also, it is often the case that attention can be focused a particular terms, as
these are the ones which will ultimately lead to observable signals. This kind
of "intelligent" analysis will be illustrated here.

Periods A and C are spin echoes in which 180° pulses are applied to both
spins; it therefore follows that the offsets of spins 1 and 2 will be refocused,
but the coupling between them will evolve throughout the entire period.  As
the total delay in the spin echo is 1/(2J12) the result will be the complete
conversion of in-phase into anti-phase magnetization.

Period B is a spin echo in which a 180° pulse is applied only to spin 1.
Thus, the offset of spin 1 is refocused, as is the coupling between spins 1
and 2; only the offset of spin 2 affects the evolution.

With these simplifications the analysis is easy.  The first pulse generates
–I1y ; during period A this then becomes –2I1xI2z.  The 90°(y) pulse to spin 1
turns this to 2I1zI2z and the 90°(x) pulse to spin 2 turns it to –2I1zI2y.  The
evolution during period B is simply under the offset of spin 2

−  → − +2 2 21 2 2 1 1 2 2 1 1 2
2 1 2I I t I I t I Iz y
t I

z y z x
zΩ Ω Ωcos sin

The next two 90° pulses transfer the first term to spin 1; the second term is
rotated into multiple quantum and is not observed

( )− +  →

− −

+
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cos sin

Ω Ω

Ω Ω
2 1 1 2 2 1 1 2
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2 2

2 2

1 2t I I t I I

t I I t I I

z y z x

I I

y z y x

x xπ

The first term on the right evolves during period C into in-phase
magnetization (the evolution of offsets is refocused).  So the final
observable term is cosΩ2 1 1t I x .  The resulting spectrum is therefore an in-
phase doublet in F2, centred at the offset of spin 1, and these peaks will both
have the same frequency in F1, namely the offset of spin 2.  The spectrum
looks just like the HMQC spectrum.

���� 0XOWLSOH�TXDQWXP�VSHFWURVFRS\

A key feature of two-dimensional NMR experiments is that no direct
observations are made during t1, it is thus possible to detect, indirectly, the
evolution of unobservable coherences.  An example of the use of this feature
is in the indirect detection of multiple-quantum spectra. A typical pulse
sequence for such an experiment is shown opposite

For a two-spin system the optimum value for ∆ is 1/(2J12).  The sequence
can be dissected as follows.  The initial 90° – ∆/2 – 180° – ∆/2 – sequence is
a spin echo which, at time ∆, refocuses any evolution of offsets but allows
the coupling to evolve and generate anti-phase magnetization.  This anti-
phase magnetization is turned into multiple-quantum coherence by the
second 90° pulse.  After evolving for time t1 the multiple quantum is
returned into observable (anti-phase) magnetization by the final 90° pulse.
Thus the first three pulses form the preparation period and the last pulse is

t1 t2
∆
2

∆
2

Pulse sequence for multiple-
quantum spectroscopy.
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the mixing period.

3.5.1 Double-quantum spectrum for a three-spin system

The sequence will be analysed for a system of three spins.  A complete
analysis would be rather lengthy, so attention will be focused on certain
terms as above, as many simplifying assumptions as possible will be made
about the sequence.

The starting point will be equilibrium magnetization on spin 1, I1z; after
the spin echo the magnetization has evolved due to the coupling between
spin 1 and spin 2, and the coupling between spin 1 and spin 3 (the 180°
pulse causes an overall sign change (see section 2.4.1) but this has no real
effect here so it will be ignored)
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[3.1]

Of these four terms, all but the first are turned into multiple-quantum by the
second 90° pulse.  For example, the second term becomes a mixture of
double and zero quantum between spins 1 and 3

( )sin cos sin cosπ π π ππ
J J I I J J I Ix z

I I I

x y
x x x

13 12 1 3

2

13 12 1 32 21 2 3∆ ∆ ∆ ∆+ + → −

It will be assumed that appropriate coherence pathway selection (see section
x.x) has been used so that ultimately only the double-quantum part
contributes to the spectrum.  This part is

[ ] ( ){ } ( )− + ≡sin cosπ πJ J I I I I Bx y y x y13 12
1
2 1 3 1 3 132 2∆ ∆ DQ 13

The term in square brackets just gives the overall intensity, but does not
affect the frequencies of the peaks in the two-dimensional spectrum as it
does not depend on t1 or t2; this intensity term is denoted B13 for brevity.
The operators in the curly brackets represent a pure double quantum state

which can be denoted ( )DQ 13
y ; the superscript (13) indicates that the double

quantum is between spins 1 and 3 (see section 2.9).
As is shown in section 2.9, such a double-quantum term evolves under

the offset according to

( )

( ) ( ) ( ) ( )

B

B t B t

y
t I t I t I

y x

z z z

13

13 3 1 13 3 1

1 1 1 2 1 2 3 1 3DQ

cos DQ DQ

13

1
13

1
13

Ω Ω Ω

Ω Ω Ω Ω

+ + →

+ − +sin
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where ( ) ( )DQx
13 ≡ −1

2 1 3 1 32 2I I I Ix x y y .  This evolution is analogous to that of

a single spin where y rotates towards –x.

As is also shown in section 2.9, ( ) ( )DQ  and DQ13 13
y x  do not evolve under

the coupling between spins 1 and 3, but they do evolve under the sum of the
couplings between these two and all other spins; in this case this is simply
(J12+J23).  Taking each term in turn

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

B t

B t J J t

B t J J t I

B t

B

y
J t I I J t I I

y

z x

x
J t I I J t I I

z z z z

z z z z

13 3 1
2 2

13 3 1 12 23 1

13 3 1 12 23 1 2

13 3 1
2 2

13

12 1 1 2 23 1 2 3

12 1 1 2 23 1 2 3

2

cos DQ

cos cos DQ

cos sin DQ

DQ

1
13

1
13

1
13

1
13

1

Ω Ω

Ω Ω

Ω Ω

Ω Ω

Ω

+  →

+ +

− + +

− +  →

− +

+

+

π π

π π

π

π

sin

sin( ) ( ) ( )

( ) ( ) ( )

Ω

Ω Ω
3 1 12 23 1

13 3 1 12 23 1 22

t J J t

B t J J t I

x

z y

cos DQ

DQ

13

1
13

π

π

+

− + +sin sin

Terms such as ( ) ( )2 22 2I Iz y z xDQ  and DQ13 13  can be thought of as double-

quantum coherence which has become "anti-phase" with respect to the
coupling to spin 2; such terms are directly analogous to single-quantum anti-
phase magnetization.

Of all the terms present at the end of t1, only ( )DQ 13
y  is rendered

observable by the final pulse

( ) ( ) ( ) ( )

( ) ( ) [ ]
cos cos DQ

cos cos

1
13

1

Ω Ω

Ω Ω

+ +  →

+ + +

+ +
3 1 12 23 1 13

2

3 1 12 23 1 13 1 3 1 3

1 2 3

2 2

t J J t B

t J J t B I I I I

y

I I I

x z z x

x x xπ

π

π

The calculation predicts that two two-dimensional multiplets appear in the
spectrum.  Both have the same structure in F1, namely an in–phase doublet,
split by (J12 + J23) and centred at (Ω1 + Ω3); this is analogous to a normal
multiplet.  In F2 one two-dimensional multiplet is centred at the offset of
spins 1, Ω1, and one at the offset of spin 3, Ω3; both multiplets are anti-
phase with respect to the coupling J13.  Finally, the overall amplitude, B13,
depends on the delay ∆ and all the couplings in the system.  The schematic
spectrum is shown opposite.  Similar multiplet structures are seen for the
double-quantum between spins 1 & 2 and spins 2 & 3.

F1

F2

1 3

1 3

Schematic two-dimensional
double quantum spectrum
showing the multiplets arising
from evolution of double-
quantum coherence between
spins 1 and 3.  If has been
assumed that J12 > J13 > J23.
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3.5.2 Interpretation of double-quantum spectra

The double-quantum spectrum shows the relationship between the
frequencies of the lines in the double quantum spectrum and those in the
(conventional) single-quantum spectrum.  If two two-dimensional multiplets
appear at (F1, F2) = (ΩA + ΩB, ΩA) and (ΩA + ΩB, ΩB) the implication is
that the two spins A and B are coupled, as it is only if there is a coupling
present that double-quantum coherence between the two spins can be
generated (e.g. in the previous section, if J13 = 0 the term B13, goes to zero).
The fact that the two two-dimensional multiplets share a common F1

frequency and that this frequency is the sum of the two F2 frequencies
constitute a double check as to whether or not the peaks indicate that the
spins are coupled.

Double quantum spectra give very similar information to that obtained
from COSY i.e. the identification of coupled spins.  Each method has
particular advantages and disadvantages:
(1)  In COSY the cross-peak multiplet is anti-phase in both dimensions,
whereas in a double-quantum spectrum the multiplet is only anti-phase in
F2.  This may lead to stronger peaks in the double-quantum spectrum due to
less cancellation.  However, during the two delays ∆ magnetization is lost by
relaxation, resulting in reduced peak intensities in the double-quantum
spectrum.

(2)  The value of the delay ∆ in the double-quantum experiment affects the
amount of multiple-quantum generated and hence the intensity in the
spectrum.  All of the couplings present in the spin system affect the intensity
and as couplings cover a wide range, no single optimum value for ∆ can be
given.  An unfortunate choice for ∆ will result in low intensity, and it is then
possible that correlations will be missed.  No such problems occur with
COSY.
(3)  There are no diagonal-peak multiplets in a double-quantum spectrum, so
that correlations between spins with similar offsets are relatively easy to
locate.  In contrast, in a COSY the cross-peaks from such a pair of spins
could be obscured by the diagonal.
(4)  In more complex spin systems the interpretation of a COSY remains
unambiguous, but the double-quantum spectrum may show a peak with F1

co-ordinate (ΩA + ΩB) and F2 co-ordinate ΩA (or ΩB) even when spins A
and B are not coupled.  Such remote peaks, as they are called, appear when
spins A and B are both coupled to a third spin.  There are various tests that
can differentiate these remote from the more useful direct peaks, but these
require additional experiments.  The form of these remote peaks in
considered in the next section.

On the whole, COSY is regarded as a more reliable and simple
experiment, although double-quantum spectroscopy is used in some special
circumstances.

3.5.3 Remote peaks in double-quantum spectra

The origin of remote peaks can be illustrated by returning to the calculation
of section 3.5.1. and focusing on the doubly anti-phase term which is present
at the end of the spin echo (the fourth term in Eqn. [3.1])

A B

A B+

F1

F2

Schematic spectrum showing
the relationship between the
single- and double-quantum
frequencies for coupled spins.
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sin sinπ πJ J I I Iy z z13 12 1 2 34∆ ∆

The 90° pulse rotates this into multiple-quantum

( )sin sin sin sinπ π π ππ
J J I I I J J I I Iy z z

I I I

z y y
x x x

13 12 1 2 3

2

13 12 1 2 34 41 2 3∆ ∆ ∆ ∆+ + →

The pure double-quantum part of this term is

( ) ( )− − ≡1
2 13 12 1 2 3 1 2 3 23 1 1

234 4 2sin sin ,π πJ J I I I I I I B I DQz x x z y y z x
∆ ∆

In words, what has been generated in double-quantum between spins 2 and
3, anti-phase with respect to spin 1.  The key thing is that no coupling
between spins 2 and 3 is required for the generation of this term – the
intensity just depends on J12 and J13; all that is required is that both spins 2
and 3 have a coupling to the third spin, spin 1.

During t1 this term evolves under the influence of the offsets and the
couplings. Only two terms ultimately lead to observable signals; at the end
of t1 these two terms are

( ) ( ) ( )

( ) ( ) ( )

B t J J t I DQ

B t J J t DQ

z x

y

23 1 3 1 12 13 1 1
23

23 1 3 1 12 13 1
23

2,

,

cos
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Ω Ω

Ω Ω
2

2

cos

sin

+ +

+ +

π

π

and after the final 90° pulse the observable parts are

( ) ( )
( ) ( ) ( )

B t J J t I I I

B t J J t I I I I

y z z

x z z x

23 1 3 1 12 13 1 1 2 3

23 1 3 1 12 13 1 2 3 2 3

4

2 2

,

,

cos

cos

Ω Ω

Ω Ω

2

2

cos

sin

+ +

+ + +

π

π

The first term results in a multiplet appearing at Ω1 in F2 and at (Ω2 + Ω3) in
F1.  The multiplet is doubly anti-phase (with respect to the couplings to
spins 2 and 3) in F2; in F1 it is in-phase with respect to the sum of the
couplings J12 and J13.  This multiplet is a remote peak, as its frequency
coordinates do not conform to the simple pattern described in section 3.5.2.
It is distinguished from direct peaks not only by its frequency coordinates,
but also by having a different lineshape in F2 to direct peaks and by being
doubly anti-phase in that dimension.

The second and third terms are anti-phase with respect to the coupling
between spins 2 and 3, and if this coupling is zero there will be cancellation
within the multiplet and no signals will be observed.  This is despite the fact
that multiple-quantum coherence between these two spins has been
generated.

J13

J23

J23
decreasing

J23 = 0

2I2zI3x

3

Illustration of how the intensity
of an anti-phase multiplet
decreases as the coupling
which it is in anti-phase with
respect to decreases.  The in-
phase multiplet is shown at the
top, and below are three
versions of the anti-phase
multiplet for successively
decreasing values of J23.
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This is a somewhat involved topic which will only be possible to cover in
outline in this lecture.

3.6.1 One-dimensional spectra

Suppose that a 90°(y) pulse is applied to equilibrium magnetization resulting
in the generation of pure x-magnetization which then precesses in the
transverse plane with frequency Ω.  NMR spectrometers are set up to detect
the x- and y-components of this magnetization.  If it is assumed (arbitrarily)
that these components decay exponentially with time constant T2 the
resulting signals, Sx(t) and Sy(t), from the two channels of the detector can be
written

( ) ( ) ( ) ( )S t t t T S t t t Tx y= − = −γ γcos exp sin expΩ Ω2 2

where γ is a factor which gives the absolute intensity of the signal.
Usually, these two components are combined in the computer to give a

complex time-domain signal, S(t)

( ) ( ) ( )
( ) ( )

( ) ( )

S t S t iS t

t i t t T

i t t T

x y= +

= + −

= −

γ

γ

cos sin exp

exp exp

Ω Ω

Ω
2

2

[3.2]

The Fourier transform of S(t) is also a complex function, S(ω):

( ) ( )[ ]
( ) ( ){ }

S FT S t

A iD

ω
γ ω ω

=

= +

where A(ω) and D(ω) are the absorption and dispersion Lorentzian
lineshapes:

( )
( )

( )
( )

( )A
T

D
T

T
ω

ω
ω

ω
ω

=
− +

=
−

− +
1

1 12
2
2

2
2

2
2Ω

Ω
Ω

These lineshapes are illustrated opposite.  For NMR it is usual to display the
spectrum with the absorption mode lineshape and in this case this
corresponds to displaying the real part of S(ω).

3.6.1.1 Phase

Due to instrumental factors it is almost never the case that the real and

All modern spectrometers use
a method know as quadrature
detection, which in effect means
that both the x- and y-
components of the
magnetization are detected
simultaneously.

Absorption (above) and
dispersion (below) Lorentzian
lineshapes, centred at
frequency Ω.
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imaginary parts of S(t) correspond exactly to the x- and y-components of the
magnetization.  Mathematically, this is expressed by multiplying the ideal
function by an instrumental phase factor, φinstr

( ) ( ) ( ) ( )S t i i t t T= −γ φexp exp expinstr Ω 2

The real and imaginary parts of S(t) are

( )[ ] ( ) ( )
( )[ ] ( ) ( )

Re cos cos sin sin exp

Im cos sin sin cos exp

S t t t t T

S t t t t T

= − −

= + −

γ φ φ

γ φ φ
instr instr

instr instr

Ω Ω

Ω Ω
2

2

Clearly, these do not correspond to the x– and y-components of the ideal
time-domain function.

The Fourier transform of S(t) carries forward the phase term

( ) ( ) ( ) ( ){ }S i A iDω γ φ ω ω= +exp instr

The real and imaginary parts of S(ω) are no longer the absorption and
dispersion signals:

( )[ ] ( ) ( )( )
( )[ ] ( ) ( )( )

Re cos sin

Im cos sin

S A D

S D A

ω γ φ ω φ ω

ω γ φ ω φ ω

= −

= +
instr instr

instr instr

Thus, displaying the real part of S(ω) will not give the required absorption
mode spectrum; rather, the spectrum will show lines which have a mixture
of absorption and dispersion lineshapes.

Restoring the pure absorption lineshape is simple. S(ω) is multiplied, in
the computer, by a phase correction factor, φcorr:

( ) ( ) ( ) ( ) ( ) ( ){ }
( )( ) ( ) ( ){ }

S i i i A iD

i A iD

ω φ γ φ φ ω ω

γ φ φ ω ω

exp exp exp

exp

corr corr instr

corr instr

= +

= + +

By choosing φcorr such that (φcorr + φinst) = 0 (i.e. φcorr = – φinstr) the phase
terms disappear and the real part of the spectrum will have the required
absorption lineshape.  In practice, the value of the phase correction is set "by
eye" until the spectrum "looks phased".  NMR processing software also
allows for an additional phase correction which depends on frequency; such
a correction is needed to compensate for, amongst other things,
imperfections in radiofrequency pulses.
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3.6.1.2 Phase is arbitrary

Suppose that the phase of the 90° pulse is changed from y to x.  The
magnetization now starts along –y and precesses towards x; assuming that
the instrumental phase is zero, the output of the two channels of the detector
are

( ) ( ) ( ) ( )S t t t T S t t t Tx y= − = − −γ γsin exp cos expΩ Ω2 2

The complex time-domain signal can then be written

( ) ( ) ( )
( ) ( )

( )( ) ( )
( ) ( ) ( )

( ) ( ) ( )

S t S t iS t

t i t t T

i t i t t T

i i t t T

i i t t T

x y= +

= − −

− + −

= − −

= −

γ

γ

γ

γ φ

sin cos exp

cos sin exp

exp exp

exp exp exp

Ω Ω

Ω Ω

Ω

Ω

2

2

2

2exp

Where φexp, the "experimental" phase, is –π/2 (recall that
exp(iφ) = cosφ + i sinφ, so that exp(–i π/2) = –i).

It is clear from the form of S(t) that this phase introduced by altering the
experiment (in this case, by altering the phase of the pulse) takes exactly the
same form as the instrumental phase error.  It can, therefore, be corrected by
applying a phase correction so as to return the real part of the spectrum to
the absorption mode lineshape. In this case the phase correction would be
π/2.

The Fourier transform of the original signal is

( ) ( ) ( ) ( ){ }
( )[ ] ( ) ( )[ ] ( )

S i A iD

S D S A

ω γ ω ω
ω γ ω ω γ ω

= − +

= = −Re Im

Thus the real part shows the dispersion mode lineshape, and the imaginary
part shows the absorption lineshape.  The 90° phase shift simply swaps over
the real and imaginary parts.

3.6.1.3 Relative phase is important

The conclusion from the previous two sections is that the lineshape seen in
the spectrum is under the control of the spectroscopist.  It does not matter,
for example, whether the pulse sequence results in magnetization appearing
along the x- or y- axis (or anywhere in between, for that matter).  It is always
possible to phase correct the spectrum afterwards to achieve the desired
lineshape.

However, if an experiment leads to magnetization from different
processes or spins appearing along different axes, there is no single phase
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correction which will put the whole spectrum in the absorption mode.  This
is the case in the COSY spectrum (section 3.4.1).  The terms leading to
diagonal-peaks appear along the x-axis, whereas those leading to cross-
peaks appear along y.  Either can be phased to absorption, but if one is in
absorption, one will be in dispersion; the two signals are fundamentally 90°
out of phase with one another.

3.6.1.4 Frequency discrimination

Suppose that a particular spectrometer is only capable of recording one, say
the x-, component of the precessing magnetization.  The time domain signal
will then just have a real part (compare Eqn. [3.2] in section 3.6.1)

( ) ( )S t t t T= −γ cos expΩ 2

Using the identity ( ) ( )( )cos exp expθ θ θ= + −1
2 i i  this can be written

( ) ( ) ( )[ ] ( )
( ) ( ) ( ) ( )

S t i t i t t T

i t t T i t t T

= + −

= − + −

1
2 2

1
2 2

1
2 2

γ

γ γ

exp exp – exp

exp exp exp – exp

Ω Ω

Ω Ω

The Fourier transform of the first term gives, in the real part, an absorption
mode peak at ω = +Ω; the transform of the second term gives the same but
at ω = –Ω.

( )Re[ ] –S A Aω γ γ= ++
1
2

1
2

where A+ represents an absorption mode Lorentzian line at ω = +Ω and A–

represents the same at ω = –Ω; likewise, D+ and D– represent dispersion
mode peaks at +Ω and –Ω, respectively.

This spectrum is said to lack frequency discrimination, in the sense that it
does not matter if the magnetization went round at +Ω or –Ω, the spectrum
still shows peaks at both +Ω and –Ω.  This is in contrast to the case where
both the x- and y-components are measured where one peak appears at either
positive or negative ω depending on the sign of Ω.

The lack of frequency discrimination is associated with the signal being
modulated by a cosine wave, which has the property that cos(Ωt)  = cos(–
Ωt), as opposed to a complex exponential, exp(iΩt) which is sensitive to the
sign of Ω.  In one-dimensional spectroscopy it is virtually always possible to
arrange for the signal to have this desirable complex phase modulation, but
in the case of two-dimensional spectra it is almost always the case that the
signal modulation in the t1 dimension is of the form cos(Ωt1) and so such
spectra are not naturally frequency discriminated in the F1 dimension.

Suppose now that only the y-component of the precessing magnetization
could be detected.  The time domain signal will then be (compare Eqn. [3.2]
in section 3.6.1)

+

+

+

0

0

0

-

-

-

a

b

c

Spectrum a has peaks at
positive and negative
frequencies and is frequency
discriminated.  Spectrum b
results from a cosine
modulated time-domain data
set; each peak appears at both
positive and negative
frequency, regardless of
whether its real offset is
positive or negative.  Spectrum
c results from a sine modulated
data set; like b each peak
appears twice, but with the
added complication that one
peak is inverted.  Spectra b and
c lack frequency discrimination
and are quite uninterpretable as
a result.
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( ) ( )S t i t t T= −γ sin expΩ 2

Using the identity ( ) ( )( )sin exp expθ θ θ= − −1
2i i i  this can be written

( ) ( ) ( )[ ] ( )
( ) ( ) ( ) ( )

S t i t i t t T

i t t T i t t T

= − −

= − − −

1
2 2

1
2 2

1
2 2

γ

γ γ

exp exp – exp

exp exp exp – exp

Ω Ω

Ω Ω

and so

( )Re[ ] –S A Aω γ γ= −+
1
2

1
2

This spectrum again shows two peaks, at ±Ω, but the two peaks have
opposite signs; this is associated with the signal being modulated by a sine
wave, which has the property that sin(–Ωt)  = – sin(Ωt).  If the sign of Ω
changes the two peaks swap over, but there are still two peaks.  In a sense
the spectrum is frequency discriminated, as positive and negative
frequencies can be distinguished, but in practice in a spectrum with many
lines with a range of positive and negative offsets the resulting set of
possibly cancelling peaks would be impossible to sort out satisfactorily.

3.6.2 Two-dimensional spectra

3.6.2.1 Phase and amplitude modulation

There are two basic types of time-domain signal that are found in two-
dimensional experiments.  The first is phase modulation, in which the
evolution in t1 is encoded as a phase, i.e. mathematically as a complex
exponential

( ) ( ) ( )( ) ( ) ( )( )S t t i t t T i t t T1 2 1 1 1 2
1

2 2 2 2
2, exp exp exp exp

phase
= − −γ Ω Ω

where Ω1 and Ω2 are the modulation frequencies in t1 and t2 respectively,

and ( )T2
1  and ( )T2

2  are the decay time constants in t1 and t2 respectively.

The second type is amplitude modulation, in which the evolution in t1 is
encoded as an amplitude, i.e. mathematically as sine or cosine

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

S t t t T i t t T

S t t t T i t t T

c

s

= − −

= − −

γ

γ

cos exp exp exp

sin exp exp exp

Ω Ω

Ω Ω

1 1 1 2
1

2 2 2 2
2

1 1 1 2
1

2 2 2 2
2

Generally, two-dimensional experiments produce amplitude modulation,
indeed all of the experiments analysed in this chapter have produced either
sine or cosine modulated data.  Therefore most two-dimensional spectra are
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fundamentally not frequency discriminated in the F1 dimension.  As
explained above for one-dimensional spectra, the resulting confusion in the
spectrum is not acceptable and steps have to be taken to introduce frequency
discrimination.

It will turn out that the key to obtaining frequency discrimination is the
ability to record, in separate experiments, both sine and cosine modulated
data sets.  This can be achieved by simply altering the phase of the pulses in
the sequence.

For example, consider the EXSY sequence analysed in section 3.2 .  The
observable signal, at time t2 = 0, can be written

( )1 1 1 1 1 1 2− +f t I f t Iy ycos cosΩ Ω

If, however, the first pulse in the sequence is changed in phase from x to y
the corresponding signal will be

( )− − −1 1 1 1 1 1 2f t I f t Iy ysin sinΩ Ω

i.e. the modulation has changed from the form of a cosine to sine.  In COSY
and DQF COSY a similar change can be brought about by altering the phase
of the first 90° pulse.  In fact there is a general procedure for effecting this
change, the details of which are given in lecture 4.

3.6.2.2 Two-dimensional lineshapes

The spectra resulting from two-dimensional Fourier transformation of phase
and amplitude modulated data sets can be determined by using the following
Fourier pair

( ) ( )[ ] ( ) ( ){ }FT i t t T A iDexp expΩ − = +2 ω ω

where A and D are the dispersion Lorentzian lineshapes described in section
3.6.1

Phase modulation

For the phase modulated data set the transform with respect to t2 gives

( ) ( ) ( )( ) ( ) ( )[ ]S t i t t T A iD1 2 1 1 1
1 2 2

2
, exp expω γ

phase
= − ++ +Ω

where ( )A+
2  indicates an absorption mode line in the F2 dimension at

ω2 = +Ω2 and with linewidth set by ( )T2
2 ; similarly ( )D+

2  is the
corresponding dispersion line.

The second transform with respect to t1 gives



3–26

( ) ( ) ( )[ ] ( ) ( )[ ]S A iD A iDω ω γ1 2
1 1 2 2,

phase
= + ++ + + +

where ( )A+
1  indicates an absorption mode line in the F1 dimension at

ω1 = +Ω1 and with linewidth set by ( )T2
1 ; similarly ( )D+

1  is the corresponding
dispersion line.

The real part of the resulting two-dimensional spectrum is

( )[ ] ( ) ( ) ( ) ( )( )Re ,S A A D Dω ω γ1 2
1 2 1 2

phase
= −+ + + +

This is a single line at (ω1,ω2) = (+Ω1,+Ω2) with the phase-twist lineshape,
illustrated below.

The phase-twist lineshape is an inextricable mixture of absorption and
dispersion; it is a superposition of the double absorption and double
dispersion lineshape (illustrated in section 3.4.1).  No phase correction will
restore it to pure absorption mode.  Generally the phase twist is not a very
desirable lineshape as it has both positive and negative parts, and the
dispersion component only dies off slowly.

Cosine amplitude modulation

For the cosine modulated data set the transform with respect to t2 gives

( ) ( ) ( )( ) ( ) ( )[ ]S t t t T A iD
c1 2 1 1 1 2

1 2 2, cos expω γ= − ++ +Ω

The cosine is then rewritten in terms of complex exponentials to give

( ) ( ) ( )[ ] ( )( ) ( ) ( )[ ]S t i t i t t T A iD1 2
1
2 1 1 1 1 1 2

1 2 2, exp exp expω γ
c

= + − − ++ +Ω Ω

The second transform with respect to t1 gives

Pseudo 3D view and contour plot of the phase-twist lineshape.
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( ) ( ) ( ){ } ( ) ( ){ }[ ] ( ) ( )[ ]S A iD A iD A iDω ω γ1 2
1
2

1 1 1 1 2 2,
c

= + + + ++ + − − + +

where ( )A−
1  indicates an absorption mode line in the F1 dimension at ω1 = –

Ω1 and with linewidth set by ( )T
2

1 ; similarly ( )D–
1  is the corresponding

dispersion line.
The real part of the resulting two-dimensional spectrum is

( )[ ] ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )Re ,S A A D D A A D Dω ω γ γ1 2
1
2

1 2 1 2 1
2

1 2 1 2

c
= − + −+ + + + − + − +

This is a two lines, both with the phase-twist lineshape; one is located at
(+Ω1,+Ω2) and the other is at (–Ω1,+Ω2).  As expected for a data set which
is cosine modulated in t1 the spectrum is symmetrical about ω1 = 0.

A spectrum with a pure absorption mode lineshape can be obtained by
discarding the imaginary part of the time domain data immediately after the

transform with respect to t2; i.e. taking the real part of ( )S t
c1 2,ω

( ) ( )[ ]
( ) ( )( ) ( )

S t S t

t t T A

c c1 2 1 2

1 1 1 2
1 2

, Re ,

cos exp

ω ω

γ

Re
=

= − +Ω

Following through the same procedure as above:

( ) ( ) ( )[ ] ( )( ) ( )S t i t i t t T A
c1 2

1
2 1 1 1 1 1 2

1 2, exp exp expω γRe
= + − − +Ω Ω

( ) ( ) ( ){ } ( ) ( ){ }[ ] ( )S A iD A iD A
c

ω ω γ1 2
1
2

1 1 1 1 2,
Re

= + + ++ + − − +

The real part of the resulting two-dimensional spectrum is

( )[ ] ( ) ( ) ( ) ( )Re ,
Re

S A A A A
c

ω ω γ γ1 2
1
2

1 2 1
2

1 2= ++ + − +

This is two lines, located at (+Ω1,+Ω2) and (–Ω1,+Ω2), but in contrast to the
above both have the double absorption lineshape.  There is still lack of
frequency discrimination, but the undesirable phase-twist lineshape has been
avoided.

Sine amplitude modulation

For the sine modulated data set the transform with respect to t2 gives
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( ) ( ) ( )( ) ( ) ( )[ ]S t t t T A iD1 2 1 1 1 2
1 2 2, sin expω γ

s
= − ++ +Ω

The cosine is then rewritten in terms of complex exponentials to give

( ) ( ) ( )[ ] ( )( ) ( ) ( )[ ]S t i t i t t T A iDi1 2
1
2 1 1 1 1 1 2

1 2 2, exp exp expω γ
s

= − − − ++ +Ω Ω

The second transform with respect to t1 gives

( ) ( ) ( ){ } ( ) ( ){ }[ ] ( ) ( )[ ]S A iD A iD A iDiω ω γ1 2
1
2

1 1 1 1 2 2,
s

= + − + ++ + − − + +

The imaginary part of the resulting two-dimensional spectrum is

( )[ ] ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )Im ,S A A D D A A D Dω ω γ γ1 2
1
2

1 2 1 2 1
2

1 2 1 2

s
= − − + −+ + + + − + − +

This is two lines, both with the phase-twist lineshape but with opposite
signs; one is located at (+Ω1,+Ω2) and the other is at (–Ω1,+Ω2).  As
expected for a data set which is sine modulated in t1 the spectrum is anti-
symmetric about ω1 = 0.

As before, a spectrum with a pure absorption mode lineshape can be
obtained by discarding the imaginary part of the time domain data
immediately after the transform with respect to t2; i.e. taking the real part of

( )S t1 2,ω
s

( ) ( )[ ]
( ) ( )( ) ( )

S t S t

t t T A

s s1 2 1 2

1 1 1
1 2

2

, Re ,

sin exp

Reω ω

γ

=

= − +Ω

Following through the same procedure as above:

( ) ( ) ( )[ ] ( )( ) ( )S t i t i t t T A
s i1 2

1
2 1 1 1 1 1

1 2

2
, exp exp exp

Reω γ= − − − +Ω Ω

( ) ( ) ( ){ } ( ) ( ){ }[ ] ( )S A iD A iD A
s iω ω γ1 2

1
2

1 1 1 1 2,
Re

= + − ++ + − − +

The imaginary part of the resulting two-dimensional spectrum is

( )[ ] ( ) ( ) ( ) ( )Im ,S A A A Aω ω γ γ1 2
1
2

1 2 1
2

1 2

s

Re
= − ++ + − +

The two lines now have the pure absorption lineshape.
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3.6.2.3 Frequency discrimination with retention of absorption lineshapes

It is essential to be able to combine frequency discrimination in the F1

dimension with retention of pure absorption lineshapes.  Three different
ways of achieving this are commonly used; each will be analysed here.

States-Haberkorn-Ruben method

The essence of the States-Haberkorn-Ruben (SHR) method is the
observation that the cosine modulated data set, processed as described in
section 3.6.2.2, gives two positive absorption mode peaks at (+Ω1,+Ω2) and
(–Ω1,+Ω2), whereas the sine modulated data set processed in the same way
gives a spectrum in which one peak is negative and one positive.
Subtracting these spectra from one another gives the required absorption
mode frequency discriminated spectrum (see the diagram below):

( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]

( ) ( )

Re , Im ,S S

A A A A A A A A

A A

ω ω ω ω

γ γ γ γ

γ

1 2 1 2

1
2

1 2 1
2

1 2 1
2

1 2 1
2

1 2

1 2

c

Re

s

Re



 −

= + − − +

=
+ + − + + + − +

+ +

In practice it is usually more convenient to achieve this result in the
following way, which is mathematically identical.

The cosine and sine data sets are transformed with respect to t2 and the
real parts of each are taken.  Then a new complex data set is formed using
the cosine data for the real part and the sine data for the imaginary part:

( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

S t S t iS t

t t T A i t t T A

i t t T A

1 2 1 2 1 2

1 1 1
1 2

1 1 1
1 2

1 1 1
1 2

2 2

2

, , ,

cos exp sin exp

exp exp

ω ω ω

γ γ

γ

SHR

Re Re

c s
= +

= − + −

= −

+ +

+

Ω Ω

Ω

Fourier transformation with respect to t1 gives a spectrum whose real part
contains the required frequency discriminated absorption mode spectrum

( ) ( ) ( )[ ] ( )

( ) ( ) ( ) ( )

S A iD A

A A iD A

ω ω γ

γ
1 2

1 1 2

1 2 1 2

,
SHR

= +

= +
+ + +

+ + + +

Marion-Wüthrich or TPPI method

cosine

sine

difference

1-

1- 1+

1+

1+

1

- +0

Illustration of the way in which
the SHR method achieves
frequency discrimination by
combining cosine and sine
modulated spectra.
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The idea behind the TPPI (time proportional phase incrementation) or
Marion–Wüthrich (MW) method is to arrange things so that all of the peaks
have positive offsets.  Then, frequency discrimination would not be required
as there would be no ambiguity.

One simple way to make all offsets positive is to set the receiver carrier
frequency deliberately at the edge of the spectrum.  Simple though this is, it
is not really a very practical method as the resulting spectrum would be very
inefficient in its use of data space and in addition off-resonance effects
associated with the pulses in the sequence will be accentuated.

In the TPPI method the carrier can still be set in the middle of the
spectrum, but it is made to appear that all the frequencies are positive by
phase shifting systematically some of the pulses in the sequence in concert
with the incrementation of t1.

In section 3.2 it was shown that in the EXSY sequence the cosine
modulation in t1, cos(Ω1t1), could be turned into sine modulation, –
sin(Ω1t1), by shifting the phase of the first pulse by 90°.  The effect of such a
phase shift can be represented mathematically in the following way.

Recall that Ω is in units of radians s–1, and so if t is in seconds Ωt is in
radians; Ωt can therefore be described as a phase which depends on time.  It
is also possible to consider phases which do not depend on time, as was the
case for the phase errors considered in section 3.6.1.1

The change from cosine to sine modulation in the EXSY experiment can
be though of as a phase shift of the signal in t1.  Mathematically, such a
phase shifted cosine wave is written as cos(Ω1t1 + φ), where φ is the phase
shift in radians.  This expression can be expanded using the well known
formula ( )cos cos cos sin sinA B A B A B+ = −  to give

( )cos cos cos sin sinΩ Ω Ω1 1 1 1t t t+ = −φ φ φ

If the phase shift, φ, is π/2 radians the result is

( )cos cos cos sin sin

sin

Ω Ω Ω
Ω

1 1 1 1

1

2 2 2t t t

t

+ = −
= −

π π π

In words, a cosine wave, phase shifted by π/2 radians (90°) is the same thing
as a sine wave.  Thus, in the EXSY experiment the effect of changing the
phase of the first pulse by 90° can be described as a phase shift of the signal
by 90°.

Suppose that instead of a fixed phase shift, the phase shift is made
proportional to t1; what this means is that each time t1 is incremented the
phase is also incremented in concert.  The constant of proportion between
the time dependent phase, φ(t1), and t1 will be written ωadditional

( )φ ωt t1 1= additional
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Clearly the units of ωadditional are radians s–1, that is ωadditional is a frequency.
The new time-domain function with the inclusion of this incrementing phase
is thus

( )( ) ( )
( )

cos cos

cos

Ω Ω

Ω
1 1 1 1 1 1

1 1

t t t t

t

+ = +

= +

φ ω

ω
additional

additional

In words, the effect of incrementing the phase in concert with t1 is to add a
frequency ωadditional to all of the offsets in the spectrum.  The TPPI method
utilizes this option of shifting all the frequencies in the following way.

In one-dimensional pulse-Fourier transform NMR the free induction
signal is sampled at regular intervals ∆.  After transformation the resulting
spectrum displays correctly peaks with offsets in the range –(SW/2) to
+(SW/2) where SW is the spectral width which is given by 1/∆ (this comes
about from the Nyquist theorem of data sampling).  Frequencies outside this
range are not represented correctly.

Suppose that the required frequency range in the F1 dimension is from –
(SW1/2) to +(SW1/2) (in COSY and EXSY this will be the same as the
range in F2).  To make it appear that all the peaks have a positive offset, it
will be necessary to add (SW1/2) to all the frequencies.  Then the peaks will
be in the range 0 to (SW1).

As the maximum frequency is now (SW1) rather than (SW1/2) the
sampling interval, ∆1, will have to be halved i.e. ∆1 = 1/(2SW1) in order that
the range of frequencies present are represented properly.

The phase increment is ωadditionalt1, but t1 can be written as n∆1 for the nth
increment of t1.  The required value for ωadditional is 2π(SW1/2) , where the 2π
is to convert from frequency (the units of SW1) to rad s–1, the units of
ωadditional.  Putting all of this together ωadditionalt1 can be expressed, for the nth
increment as

( )ω π

π

π

additionalt
SW

n

SW
n

SW

n

1
1

1

1

1

2
2

2
2

1

2

2

=






=













=

∆

The way in which the phase incrementation increases the frequency of the
cosine wave is shown below:

+SW1

+SW1

+SW1/2

-SW1

-SW1/2

0

0

0

a

b

c

Illustration of the TPPI method.
The normal spectrum is shown
in a, with peaks in the range –
SW/2 to +SW/2.  Adding a
frequency of SW/2 to all the
peaks gives them all positive
offsets, but some, shown
dotted) will then fall outside the
spectral window – spectrum b.
If the spectral width is doubled
all peaks are represented
correctly – spectrum c.
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time

In words this means that each time t1 is incremented, the phase of the signal
should also be incremented by 90°, for example by incrementing the phase
of one of the pulses.  The way in which it can be decided which pulse to
increment will be described in lecture 4.

A data set from an experiment to which TPPI has been applied is simply
amplitude modulated in t1 and so can be processed according to the method
described for cosine modulated data so as to obtain absorption mode
lineshapes.  As the spectrum is symmetrical about F1 = 0 it is usual to use a
modified Fourier transform routine which saves effort and space by only
calculating the positive frequency part of the spectrum.

Echo anti-echo method

Few two-dimensional experiments naturally produce phase modulated data
sets, but if gradient pulses are used for coherence pathway selection (see
lecture 4) it is then quite often found that the data are phase modulated.  In
one way this is an advantage, as it means that no special steps are required to
obtain frequency discrimination.  However, phase modulated data sets give
rise to spectra with phase-twist lineshapes, which are very undesirable.  So,
it is usual to attempt to use some method to eliminate the phase-twist
lineshape, while at the same time retaining frequency discrimination.

The key to how this can be done lies in the fact that two kinds of phase
modulated data sets can usually be recorded.  The first is called the P-type or
anti-echo spectrum

( ) ( ) ( )( ) ( ) ( )( )S t t i t t T i t t T1 2 1 1 1
1

2 2 2
2

2 2
, exp exp exp exp

P
= − −γ Ω Ω

the "P" indicates positive, meaning here that the sign of the frequencies in
F1 and F2 are the same.

The second data set is called the echo or N-type

The open circles lie on a cosine wave, cos(Ω × n∆ ), where ∆ is the sampling interval and n runs 0, 1, 2
...  The closed circles lie on a cosine wave in which an additional phase is incremented on each point
i.e. the function is cos(Ω × n∆ + n φ); here φ = π/8.  The way in which this phase increment increases the
frequency of the cosine wave is apparent.

t1

t2

t2

t2

t2

t2

t1=0

t1=∆

t1=2∆

t1=3∆

t1=4∆

x

y

-x

-y

x

TPPI phase incrementation
applied to a COSY sequence.
The phase of the first pulse is
incremented by 90° each time
t1 is incremented.
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( ) ( ) ( )( ) ( ) ( )( )S t t i t t T i t t T1 2 1 1 1
1

2 2 2
2

2 2
, exp – exp exp exp

N
= − −γ Ω Ω

the "N" indicates negative, meaning here that the sign of the frequencies in
F1 and F2 are opposite.  As will be explained in lecture 4 in gradient
experiments it is easy to arrange to record either the P- or N-type spectrum.

The simplest was to proceed is to compute two new data sets which are

( ) ( )[ ]
( ) ( )[ ] ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )[ ]
( ) ( )[ ] ( ) ( ) ( )

1
2 1 2 1 2

1
2 1 1 1 1 1 2

1
2 2 2 2

2

1 1 1 2
1

2 2 2 2
2

1
2 1 2 1 2

1
2 1 1 1 1 1 2

1
2 2 2 2

2

S t t S t t

i t i t t T i t t T

t t T i t t T

S t t S t t

i t i t t T i t t T

i

i

, ,

exp exp exp exp exp

cos exp exp exp

, ,

exp exp exp exp exp

( ) ( )

( ) ( )

( ) ( )

P N

P N

+ =

+ − − −

= − −

− =

− − − −

γ

γ

γ

Ω Ω Ω

Ω Ω

Ω Ω Ω

( ) ( ) ( ) ( )= − −γ sin exp exp exp( ) ( )Ω Ω1 1 1 2
1

2 2 2 2
2t t T i t t T

These two combinations are just the cosine and sine modulated data sets
that are the inputs needed for the SHR method.  The pure absorption
spectrum can therefore be calculated in the same way starting with these
combinations.

3.6.2.4 Phase in two-dimensional spectra

In practice there will be instrumental and other phase shifts, possibly in both
dimensions, which mean that the time-domain functions are not the
idealised ones treated above.  For example, the cosine modulated data set
might be

( ) ( ) ( )( ) ( ) ( )( )S t t t T i t i t Tc = + − + −γ φ φcos exp exp expΩ Ω1 1 1 1
1

2 2 2 2
2

2 2

where φ1 and φ2 are the phase errors in F1 and F1, respectively.  Processing
this data set in the manner described above will not give a pure absorption
spectrum.  However, it is possible to recover the pure absorption spectrum
by software manipulations of the spectrum, just as was described for the
case of one-dimensional spectra.  Usually, NMR data processing software
provides options for making such phase corrections to two-dimensional data
sets.
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4 Coherence Selection: Phase Cycling and 
Gradient Pulses 

���� ����	
���
	��

 A multiple-pulse NMR experiment is designed to manipulate the spins in 
a certain carefully defined way so as to produce a particular spectrum.  
However, a given pulse sequence usually can affect the spins in several 
different ways and as a result the final spectrum may contain resonances 
other than those intended when the experiment was designed.  The presence 
of such resonances may result in extra crowding in the spectrum, they may 
obscure the wanted peaks and they may also lead to ambiguities of 
interpretation.  It is thus all but essential to ensure that the responses seen in 
the spectrum are just those we intended to generate when the pulse sequence 
was designed. 
 There are two principle ways in which this selection of required signals is 
achieved in practice.  The first is the procedure known as phase cycling.  In 
this the multiple-pulse experiment is repeated a number of times and for 
each repetition the phases of the radiofrequency pulses are varied through a 
carefully designed sequence.  The free induction decays resulting from each 
repetition are then combined in such a way that the desired signals add up 
and the undesired signals cancel.  The second procedure employs field 
gradient pulses.  Such pulses are short periods during which the magnetic 
field is made deliberately inhomogeneous.  During a gradient pulse, 
therefore, any coherences present dephase are apparently lost.  However, the 
application of a subsequent pulsed field gradient can undo this dephasing 
and cause some of the coherences to refocus.  By a careful choice of the 
gradient pulses within a pulse sequence it is possible to ensure that only the 
coherences giving rise to the wanted signals are refocused. 
 Historically, in the development of multiple-pulse NMR, phase cycling 
has been the principle method used for selecting the desired outcome.  
Pulsed field gradients, although their utility had been known from the 
earliest days of NMR, have only relatively recently been seen as a practical 
alternative.  Both methods can be described using the key concept of 
coherence order and by utilising the idea of a coherence transfer pathway.  
In this lecture we will start out by describing phase cycling, emphasising 
first its relation to the idea of difference spectroscopy and then moving on to 
describe the formal methods for writing and analysing phase cycles.  The 
tools needed to describe selection with gradient pulses are quite similar to 
those used in phase cycling, and this will enable us to make rapid progress 
through this topic.  There are, however, some key differences between the 
two methods, especially in regard to the sensitivity and other aspects of 
multi-dimensional NMR experiments. 
 

���� ����������
���

4.2.1 Phase 

In the simple vector picture of NMR the phase of a radiofrequency pulse 
determines the axis along which the magnetic field, B1, caused by the 



4–2 

oscillating radiofrequency current in the coil, appears.  Viewed in the usual 
rotating frame (rotating at the frequency of the transmitter) this magnetic 
field is static and so it is simple to imagine its phase as the angle, β, between 
a reference axis and the vector representing B1.  There is nothing to indicate 
which direction ought to be labelled x or y; all we know is that these 
directions are perpendicular to the static field and perpendicular to one 
another.  So, provided we are consistent, we are free to decide arbitrarily 
where to put this reference axis.  In common with most of the NMR 
community we will decide that the reference axis is along the x-axis of the 
rotating frame and that the phase of the pulse will be measured from x;  thus 
a pulse with phase x has a phase angle, β, of zero.  Similarly a pulse of phase 
y has a phase angle of 90° or π/2 radians.  Modern spectrometers allow the 
phase of the pulse to be set to any desired value. 
 The NMR signal, that is the free induction decay (FID), is recorded by 
measuring the voltage generated in a coil as it is cut by precessing transverse 
magnetization.  Most spectrometers take this high-frequency signal and 
convert it to the audio-frequency range by subtracting a fixed reference 
frequency.  Almost always this fixed reference frequency is the same as the 
transmitter frequency and the effect of this choice is to make it appear that 
the FID has been detected in the rotating frame.  Thus the frequencies which 
appear in the detected FID are the offset or difference frequencies between 
the Larmor frequency and the rotating frame frequency. 
 Like the pulse, the NMR receiver also has associated with it a phase.  If 
we imagine at time zero that there is transverse magnetization along the x-
axis (of the laboratory frame) and that a small coil is wound around the x-
axis the voltage induced in the coil as the magnetization precesses is 
proportional to the x-component i.e. proportional to cos(ω0t).  On the other 
hand, if the magnetization starts out along the –y axis the induced voltage is 
proportional to sin(ω0t), simply as this is the projection onto the x-axis as 
the magnetization vector rotates in the transverse plane.  In mathematical 
terms the detected signal can be always be written cos(ω0t + φ), where φ is a 
phase angle.  The magnetization starting out along x gives a signal with 
phase angle zero, whereas that starting along –y has a phase angle of –π/2. 
 The NMR receiver can differentiate between the cosine and sine 
modulated parts of the signals by using two detectors fed with reference 
signals which are shifted in phase by 90° relative to one another.  The 
detection process involves using a device called a mixer which essentially 
multiplies together (in an analogue circuit) the incoming and reference 
signals.  The inputs to the mixers at the reference frequency, ωref, take the 
form of a cosine and a sine for the two detectors, as these signals have the 
required 90° phase shift between them.  If the incoming signal is 
cos(ω0t + φ) the outputs of the two mixers are 

 

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]

0

90

1
2

1
2

° + = + + + +

° + = + + − +

: cos cos cos cos –

: cos sin sin sin –

ω φ ω ω φ ω ω φ ω

ω φ ω ω φ ω ω φ ω

0 ref 0 ref 0 ref

0 ref 0 ref 0 ref

t t t t

t t t t
 

These outputs are filtered to remove the high frequency components (the 
first terms on the right) and the outputs from the 0° and 90° detectors 
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become the real and imaginary parts of a complex number.  If we add a 
damping term and ignore the numerical factors, the detected (complex) 
signal is 

 

( ) ( )[ ]
( )( )

cos – sin – exp( )

exp – exp( ) exp( )

ω φ ω ω φ ω

ω ω φ

0 ref 0 ref

0 ref

i

- i i

+ − + −

≡ − −

t t Rt

t Rt
 

Fourier transformation of this signal gives a peak at the offset frequency, 
ω0 – ωref, and with phase φ.  If φ is zero, then an absorption mode peak is 
expected, whereas if φ is π/2 a dispersion mode peak is expected; in general 
a line of mixed phase is seen.  The detector system is thus able to determine 
not only the frequency at which the magnetization is precessing, but also its 
phase i.e. its position at time zero. 
 In the above example the two reference signals sent to the two detectors 
were chosen deliberately so that magnetization with phase φ = 0 would 
result in an absorption mode signal.  However, we could alter the phase of 
these reference signals to produce any phase we liked in the spectrum.  If the 
reference signals were cos(ωreft + β) and sin(ωreft + β) the FID would be of 
the form 

 

( ) ( )[ ]
( )( )

cos – sin – exp( )

exp – exp( ( )) exp( )

ω φ ω β ω φ ω β

ω ω φ β

0 ref 0 ref

0 ref

i

- i i

+ − − + − −

≡ − − −

t t Rt

t Rt
 

Now we see that the line has phase (φ - β).  The key point to note that as β is 
under our control we can alter the phase of the lines in the spectrum simply 
by altering the reference phase to the detector. 

 In modern NMR spectrometers the phase, β, of this reference is under the 
control of the pulse programmer.  This receiver phase and the ability to alter 
it freely is a key part of phase cycling.  The usual language in which the 
receiver phase is specified is to talk about "the receiver being aligned along 
x", by which it is meant that the receiver phase is set to a value such that if, 
at the start of the FID, there were solely magnetization along x the resulting 
spectrum would contain an absorption mode signal.  Likewise, "aligning the 
receiver along –y" means that an absorption mode spectrum would result if 
the magnetization were solely along –y at the start of the FID.  If the 
magnetization were aligned along x instead, such a receiver phase would 
result in a dispersion mode spectrum (β = π/2). 
 Of course in practice we can always phase the spectrum to produce 
whatever lineshape we like, regardless of the setting of the receiver phase.  
Indeed the process of phasing the spectrum and altering the receiver phase 
are the same.  However, as signals are often combined before Fourier 
transformation and phasing, the relative phase shifts that can be obtained by 
altering the receiver phase are important. 
 Figure 1 shows, using the vector model, the relationship between the 
position of magnetization at the start of the FID, the receiver phase and the 
phase of the lineshape in the corresponding spectrum.  In this diagram the 
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axis along which the receiver is "aligned" is indicated by a dot, •. 

 

Figure 1.  Illustration of the lineshape expected in the spectrum (shown underneath the 
vector diagrams) for different relative phases of the magnetization (the vector) and the 

receiver phase, indicated by •. 

 

4.2.2 Two Simple Examples 
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Figure 2  Illustration of how the receiver phase is made to follow the phase of the 
magnetization. 

 The CYCLOPS phase cycling scheme is commonly used in even the 
simplest pulse-acquire experiments.  The sequence is designed to cancel 
some imperfections associated with errors in the two phase detectors 
mentioned above; a description of how this is achieved is beyond the scope 
of this discussion.  However, the cycle itself illustrates very well the points 
made in the previous section.  There are four steps in the cycle, the pulse 
phase is advanced by 90° on each step, as is the phase of the receiver.  
Figure 2 shows simple vector diagrams which illustrate that as the pulse 
phase causes the magnetization to appear along different axes the receiver 
phase is advanced in step so as to always be in the same position relative to 
the magnetization.  The result is that the lineshape is the same for each 
repetition of the experiment so that they can all be added together without 
cancellation.  This is exactly what we require as a FID is time-averaged.  It 
is easily seen that the absolute phase of the receiver is unimportant, all that 
matters is that the receiver phase advances in step with the magnetization 
(see exercises). 
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x
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Figure 3.  Illustration of how failing to move the receiver phase in concert with the phase of 
the magnetization leads to signal cancellation; the sum of the spectra shown is zero. 

Finally, Fig. 3 shows the result of "forgetting" to move the receiver phase; if 
the signals from all four steps are added together the signal cancels 
completely.  Similar cancellation arises if the receiver phase is moved 
backwards i.e. x, –y, –x, y rather than x, y, –x, –y (see exercises). 

 

Figure 4.  The effect of altering the phase of the 180° pulse in a spin echo. 

 A second familiar phase cycle is EXORCYLE which is used in 
conjunction with 180° pulses used in spin echoes.  Figure 4 shows a simple 
vector diagram which illustrates the effect on the final position of the vector 
when the phase of the 180° pulse is altered through the sequence x, y, –x, –y.  
It is seen that the magnetization refocuses along the  y, –y, y and –y axes 
respectively as the 180° pulse goes through its sequence of phases.  If the 
four signals were simply added together in the course of time averaging they 
would completely cancel one another.  However, if the receiver phase is 
adjusted to follow the position of the refocused magnetization, i.e. to take 
the values y, –y, y, –y, each repetition will give the same lineshape and so 
the signals will add up.  This is the EXORCYCLE sequence. 
 As before, it does not matter if the receiver is actually aligned along the 
direction in which the magnetization refocuses, all that matters is that when 
the magnetization shifts by 180° the receiver should also shift by 180°.  
Thus the receiver phase could just as well have followed the sequence x, –x, 
x, –x. 
 For brevity, and because of the way in which these phase cycles are 
encoded on spectrometers, it is usual to refer to the pulse and receiver 
phases using numbers with 0, 1, 2, 3 representing phases of 0°, 90°, 180° 
and 270° respectively (that is alignment with the x, y, –x  and –y axes).  So, 
the phases for EXORCYCLE can be written as 0 1 2 3 for the 180° pulse 
and 0 2 0 2 for the receiver. 
 The EXORCYCLE sequence is designed to eliminate those signals which 
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do not experience a perfect 180° refocusing pulse.  We shall see later that 
the concept of coherence order and coherence transfer pathways allows us to 
confirm this in a very general way.  However, at this point it is possible to 
deduce using the vector approach that if the 180° pulse is entirely absent the 
EXORCYLE phase cycle cancels all of the signal (see exercises). 
 

4.2.3 Difference Spectroscopy 

 So far we have seen that the phase of the detected NMR signal can be 
influenced by the phase of both the pulses and the receiver.  We have also 
seen that it is perfectly possible to cancel out all of the signal by making 
inappropriate choices of the pulse and receiver phases.  Of course we 
generally do not want to cancel the desired signal, so these examples were 
not of practical relevance.  However, there are many occasions in which we 
do want to cancel certain signals and preserve others.  Often the required 
cancellation can be brought about by a simple difference experiment in 
which the signal is recorded twice with such a choice of pulse phases that 
the required signals change sign between the two experiments experiment 
and the unwanted signals do not.  Subtracting the two signals then cancels 
the unwanted signals.  Such a difference experiment can be considered as a 
two-step phase cycle. 
 A good example of the use of this simple difference procedure is in the 
INEPT experiment, used to transfer magnetization from spin I to a coupled 
spin S.  The sequence is shown in Fig. 5. 

 

 

Figure 5  The pulse sequence for INEPT.  In this diagram the filled rectangles represent 90° 
pulses and the open rectangles represent 180° pulses.  Unless otherwise stated the pulses 

have phase x. 

With the phases and delays shown equilibrium magnetization of spin I, Iz, is 
transferred to spin S, appearing as the operator Sx.  Equilibrium 
magnetization of S, Sz, appears as –Sy.  Often this latter signal is an 
inconvenience and it is desirable to suppress it.  The procedure is very 
simple.  If we change the phase of the first I pulse from x to –x the final 
magnetization arising from transfer of the I magnetization to S  becomes –Sx  
i.e. it changes sign.  In contrast, the signal arising from equilibrium S 
magnetization is unaffected simply because the Sz operator is unaffected by 
the first 90° pulse to spin I.  By repeating the experiment twice, once with 
the phase of the first pulse set to x and once with it set to –x, and then 
subtracting the two resulting signals, the undesired signal is cancelled and 
the desired signal adds. 
 This simple difference experiment can be regarded as a two-step phase 



4–7 

cycle in which the first I pulse has phases 0 2 and the receiver follows with 
phases 0 2.  The difference is achieved in the course of time averaging (i.e. 
as the time domain signals are accumulated from different scans) rather than 
by recording the signals separately and then subtracting them. 
 It is easy to confirm that an alternative is to cycle the second I spin 90° 
pulse 0 2 along with a receiver phase of 0 2.  However, cycling the S spin 
90° pulse is not effective at separating the two sources of signal as they are 
affected in the same way by changing the phase of this pulse (see exercises). 
 Difference spectroscopy reveals one of the key features of phase cycling: 
that is the need to identify a pulse whose phase affects differently the fate of 
the desired and undesired signals.  Cycling the phase of this pulse can then 
be the basis of discrimination.  In many experiments a simple cycle of 0 2 
on a suitable pulse and the receiver is all that is required to select the desired 
signal.  This is particularly the case in heteronuclear experiments, of which 
the INEPT sequence is the prototype.  Indeed, even the phase cycling used in 
the most complex three- and four-dimensional experiments applied to 
labelled proteins is little more than this simple cycle repeated a number of 
times for different transfer steps. 
 

4.2.4 Basic Concepts 

 Although we can make some progress in writing simple phase cycles by 
considering the vector picture, a more general framework is needed in order 
to cope with experiments which involve multiple quantum coherence and 
related phenomena.  We also need a theory which enables us to predict the 
degree to which a phase cycle can discriminate against different classes of 
unwanted signals.  A convenient and powerful way of doing both these 
things is to use the coherence transfer pathway approach. 
 

4.2.4.1 Coherence Order 

 Coherences, of which transverse magnetization is one example, can be 
classified according to a coherence order, p, which is an integer taking 
values 0, ± 1, ± 2 ...  Single quantum coherence has p = ± 1, double has 
p = ± 2 and so on; z-magnetization, "zz" terms and zero-quantum coherence 
have p = 0.  This classification comes about by considering the way in which 
different coherences respond to a rotation about the z-axis.  A coherence of 

order p, represented by the density operator ( )σ p , evolves under a z-rotation 
of angle φ according to 

 ( ) ( ) ( ) ( ) ( )exp exp exp− = −i i iφ σ φ φ σF F pz
p

z
p

 [1] 

where Fz is the operator for the total z-component of the spin angular 
momentum.  In words, a coherence of order p experiences a phase shift of 
- pφ.  Equation [1] is the definition of coherence order. 
 As an example consider the pure double quantum operator for two 
coupled spins, 2I1xI2y + 2I1yI2x.  This can be rewritten in terms of the raising 
and lowering operators for spin i, Ii

+  and I i
− , defined as 



4–8 

 
I I I I I Ii ix iy i ix iy

+ = + = −i i–

 

to give ( )1
1 2 1 2i I I I I+ + − −− .  The effect of a z-rotation on the raising and 

lowering operators is, in the arrow notation, 

 ( )I Ii

I

i
iz± ± →φ φexp � i   . 

Using this, the effect of a z-rotation on the term I I1 2
+ +  can be determined as 

 ( ) ( ) ( )I I I I I II Iz z

1 2 1 2 1 2
1 2+ + + + + + → −  → − −φ φφ φ φexp exp expi i i  

Thus, as the coherence experiences a phase shift of –2φ the coherence is 
classified according to Eqn. [1] as having p = 2. It is easy to confirm that the 
term I I1 2

− −  has p = −2.  Thus the pure double quantum term, 
2 21 2 1 2I I I Ix y y x+ , is an equal mixture of coherence orders +2 and –2. 

 As this example shows, it is possible to determine the order or orders of 
any state by writing it in terms of raising and lowering operators and then 
simply inspecting the number of raising and lowering operators in each 
term.  A raising operator contributes +1 to the coherence order whereas a 
lowering operator contributes –1.  A z-operator, Iiz, does not contribute to 
the overall order as it is invariant to z-rotations. 
 Coherences involving heteronuclei can be assigned both an overall order 
and an order with respect to each nuclear species.  For example the term 
I S1 1

+ −  has an overall order of 0, is order +1 for the I spins and –1 for the S 

spins.  The term I I S z1 2 1
+ +  is overall of order 2, is order 2 for the I spins and 

is order 0 for the S spins. 
 

4.2.4.2 Phase Shifted Pulses 

 A radiofrequency pulse causes coherences to be transferred from one 
order to one or more different orders; it is this spreading out of the 
coherence which is responsible both for the richness of multiple-pulse NMR 
and for the need for phase cycling to select one transfer among many 
possibilities.  An example of this spreading between coherence orders is the 
effect of a non-selective pulse on antiphase magnetization, such as 2I1xI2z, 
which corresponds to coherence orders ±1.  Some of the coherence may be 
transferred into double- and zero-quantum coherence, some may be 
transferred into two-spin order and some will remain unaffected.  The 
precise outcome depends on the phase and flip angle of the pulse, but in 
general we can see that there are many possibilities. 
 If we consider just one coherence, of order p, and consider its transfer to 
a coherence of order p' by a radiofrequency pulse we can derive a very 
general result for the way in which the phase of the pulse affects the phase 
of the coherence.  It is on this relationship that the phase cycling method is 
based. 



4–9 

 We will write the initial state of order p as ( )σ p  and represent the effect 
of the radiofrequency pulse causing the transfer by the unitary 
transformation U(φ)where φ is the phase of the pulse.  The initial and final 
states are related by the usual transformation  

 ( ) ( ) ( ) ( )U Up p0 0σ σ–1 = ′  +  terms of other orders  [2] 

the other terms will be dropped as we are only interested in the transfer from 
p to p'.  The transformation brought about by a radiofrequency pulse phase 
shifted by φ,  U(φ), is related to that with the phase set to zero, U(0), by the 
rotation 

 ( ) ( ) ( ) ( )U F U Fz zφ φ φ= −exp expi i0  [3] 

Using this the effect of the phase shifted pulse on the initial state ( )σ p
 can 

be written 

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

U U

F U F F U F

p

z z
p

z z

φ σ φ

φ φ σ φ φ

–1

–
exp exp exp exp

=

− −i i i i0 0
1

 [4] 

The central rotation of ( )σ p , ( ) ( ) ( )exp expi iφ σ φF Fz
p

z− , can be replaced, 

using Eqn. [1], by ( ) ( )exp i p pφ σ  so that the right-hand side of Eqn. [4] 

simplifies to 

 ( ) ( ) ( ) ( ) ( ) ( )exp exp exp
–1

i i ip F U U Fz
p

zφ φ σ φ− 0 0  

We now use Eqn. [2] to rewrite ( ) ( ) ( )U Up0 0σ –1  as ( )σ ′p
 thus giving 

 ( ) ( ) ( ) ( )exp exp expi i ip F Fz
p

zφ φ σ φ− ′

 

Once again we apply Eqn. [2] to determine the effect of the z-rotations on 

the state ( )σ ′p
, giving the final result 

 ( ) ( ) ( ) ( ) ( )exp exp expi i ip p pp pφ φ σ φ σ− ′ = −′ ′∆  [5] 

where the change is coherence order, ∆p, is defined as (p' − p).  Returning to 
Eqn. [] we can now use Eqn. [5] to rewrite the right hand side and hence 
obtain the simple result 
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 ( ) ( ) ( ) ( ) ( )U U pp pφ σ φ φ σ–1
exp= − ′i ∆  [6] 

This relationship result tells us that if we consider a pulse which causes a 
change in coherence order of ∆p then altering the phase of that pulse by an 
angle φ will result in the coherence acquiring a phase label –∆p φ.  In other 
words a particular change in coherence order acquires a phase label when 
the phase of the pulse causing that change is altered; the size of this label 
depends on the change in coherence order.  It is this property which enables 
us to separate different changes in coherence order from one another by 
altering the phase of the pulse. 
 Before seeing how this key relationship is used in practice there are two 
remarks to make.  The first concerns the transformation U(φ).  We have 
described this as being due to a radiofrequency pulse, but in fact any 
sequence of pulses and delays can be represented by such a transformation 
so our final result is general.  Thus we can, for the purposes of analysing the 
effects of a pulse sequence, group one or more pulses and delays together 
and simply consider them as a single unit causing a transformation from one 
coherence order to another.  The whole unit can be phase shifted by shifting 
the phase of all the pulses in the unit.  We shall see some practical 
applications of this later on.  The second comment to make concerns the 
phase which is acquired by the transferred coherence: this phase appears as a 
phase shift of the final observed signal, i.e. the position of the observed 
magnetization in the xy-plane at the start of acquisition.  A particular 
coherence may undergo several transformations before it is observed finally 
, but at each stage these phase shifts are carried forward and so affect the 
final signal.  Thus, although the coherence of order p' resulting from the 
transformation U may not itself be observable, any phase it acquires in the 
course of the transformation will ultimately be observed as a phase shift in 
the observed signal derived from this coherence. 
 

4.2.4.3 Selection of a Single Pathway 

 To focus on the issue at hand let us consider the case of transferring from 
coherence order +2 to order –1.  Such a transfer has ∆p = (–1 – (2) ) = –3.  
Let us imagine that the pulse causing this transformation is cycled around 
the four cardinal phases (x, y, –x, –y, i.e. 0°, 90°, 180°, 270°) and draw up a 
table of the phase shift that will be experienced by the transferred coherence.  
This is simply computed as – ∆p φ, in this case = – (–3)φ. 
 

step pulse phase phase shift experienced by 
transfer with ∆p = –3 

equivalent phase 

1 0 0 0 
2 90 270 270 
3 180 540 180 
4 270 810 90 

 
The fourth column, labelled "equivalent phase", is just the phase shift 
experienced by the coherence, column three, reduced to be in the range 0 to 
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360° by subtracting multiples of 360° (e.g. for step 3 we subtracted 360° and 
for step 4 we subtracted 720°). 
 If we wished to select this change in coherence order of –3 we would 
simply shift the phase of the receiver in order to match the phase that the 
coherence has acquired, which are the phases shown in the last column.  If 
we did this, then each step of the cycle would give an observed signal of the 
same phase and so they four contributions would all add up.  This is 
precisely the same thing as we did when considering the CYCLOPS 
sequence in section 4.2.2; in both cases the receiver phase follows the phase 
of the desired magnetization or coherence. 
 We now need to see if this four step phase cycle eliminates the signals 
from other pathways.  Let us consider, as an example, a pathway with 
∆p = 2, which might arise from the transfer from coherence order –1 to +1.  
Again we draw up a table to show the phase experienced by a pathway with 
∆p = 2, that is computed as – (2)φ 
 

step pulse 
phase 

phase shift 
experienced 
by transfer 
with ∆p = 2 

equiva-
lent 

phase 

rx. phase 
to 

select 
∆p = –3 

difference 

1 0 0 0 0 0 
2 90 –180 180 270 270 – 180 = 90 
3 180 –360 0 180 180 – 0 = 180 
4 270 –540 180 90 90 – 180 = –90 

 
As before, the equivalent phase is simply the phase in column 3 reduced to 
the range 0 to 360°.  The fifth column shows the receiver (abbreviated to 
rx.) phases that would be needed to select the transfer with ∆p = –3, that is 
the phases determined in the first table.  The question we have to ask is 
whether or not these phase shifts will lead to cancellation of the transfer 
with ∆p = 2.  To do this we compute the difference between the receiver 
phase, column 5, and the phase shift experienced by the transfer with ∆p = 
2, column 4.  The results are shown in column 6, labelled "difference", 
which shows the phase difference between the receiver and the signal arising 
from the transfer with ∆p = 2.  It is quite clear that the receiver is not 
following the phase shifts of the coherence.  Indeed it is quite the opposite.  
Step 1 will cancel with step 3 as the 180° phase shift between them means 
that the two signals have opposite sign.  Likewise step 2 will cancel with 
step 4 as there is a 180° phase shift between them.  We conclude, therefore, 
that this four step cycle cancels the signal arising from a pathway with ∆p = 
2. 
 An alternative way of viewing the cancellation is to represent the results 
of the "difference" column by vectors pointing at the indicated angles.  This 
is shown in Fig. 6 and it is clear that the opposed vectors cancel one another. 
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step
difference 0° 90° 180° -90°

1 2 3 4

0°

 

Figure 6.  A visualisation of the phases from the "difference" column. 

 Next we consider the coherence transfer with ∆p = +1.  Again, we draw 
up the table and calculate the phase shifts experience by this transfer from – 
(+1)φ. 
 

Step pulse 
phase 

phase shift 
experienced 
by transfer 

with ∆p = +1 

equiva-
lent 

phase 

rx. 
phase to 

select 
∆p = –3 

difference 

1 0 0 0 0 0 
2 90 –90 270 270 270 – 270 = 0 
3 180 –180 180 180 180 – 180 = 0 
4 270 –270 90 90 90 – 90 = 0 

 
Here we see quite different behaviour.  The equivalent phases, that is the 
phase shifts experienced by the transfer with ∆p = 1, match exactly the 
receiver phase determined for ∆p = –3, thus the phases in the "difference" 
column are all zero.  We conclude that the four step cycle selects transfers 
both with ∆p = –3 and +1. 
 Some more work with tables such as these (see exercises) will reveal that 
this four step cycle suppresses contributions from changes in coherence 
order of –2, –1 and 0.  It selects ∆p = –3 and 1.  It also selects changes in 
coherence order of 5, 9, 13 and so on.  This latter sequence is easy to 
understand.  A pathway with ∆p = 1 experiences a phase shift of –90° when 
the pulse is shifted in phase by 90°; the equivalent phase is thus 270°.  A 
pathway with ∆p = 5 would experience a phase shift of –5 × 90° = –450° 
which corresponds to an equivalent phase of 270°.  Thus the phase shifts 
experienced for ∆p = 1 and 5 are identical and it is clear that a cycle which 
selects one will select the other.  The same goes for the series ∆p = 9, 13 ... 

 The extension to negative values of ∆p is also easy to see.  A pathway 
with ∆p = –3 experiences a phase shift of 270° when the pulse is shifted in 
phase by 90°.  A transfer with ∆p = +1 experiences a phase of –90° which 
corresponds to an equivalent phase of 270°.  Thus both pathways experience 
the same phase shifts and a cycle which selects one will select the other.  
The pattern is clear, this four step cycle will select a pathway with ∆p = −3, 
as it was designed to, and also it will select any pathway with ∆p = −3 + 4n 
where n = ±1, ±2, ±3 ... 
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4.2.4.4 General Rules 

 The discussion in the previous section can be generalised to the 
following: 
 
Consider a phase cycle in which the phase of a pulse takes N evenly spaced 
steps covering the range 0 to 2π radians i.e. the phases, φk, are 2πk/N where 
k = 0, 1, 2 ... (N – 1).  To select a change in coherence order, ∆p, the receiver 
phase is set to –∆p × φk for each step and all the resulting signals are 
summed.  This cycle will, in addition to selecting the specified change in 
coherence order, also select pathways with changes in coherence order ∆p ± 
nN where n = ±1, ±2 .. 
 

 The way in which phase cycling selects a series of values of ∆p which are 
related by a harmonic condition is closely related to the phenomenon of 
aliasing in Fourier transformation.  Indeed, the whole process of phase 
cycling can be seen as the computation of a discrete Fourier transformation 
with respect to the pulse phase.  The Fourier co-domains are phase and 
coherence order. 
 The fact that a phase cycle inevitably selects more than one change in 
coherence order is not necessarily a problem.  We may actually wish to 
select more than one pathway, and examples of this will be given below in 
relation to specific two-dimensional experiments.  Even if we only require 
one value of ∆p we may be able to discount the values selected at the same 
time as being improbable or insignificant.  In a system of m coupled spins 
one-half, the maximum order of coherence that can be generated is m, thus 
in a two spin system we need not worry about whether or not a phase cycle 
will discriminate between double quantum and six quantum coherences as 
the latter simply cannot be present.  Even in more extended spin systems the 
likelihood of generating high-order coherences is rather small and so we 
may be able to discount them for all practical purposes.  If a high level of 
discrimination between orders is needed, then the solution is simply to use a 
phase cycle which has more steps i.e. in which the phases move in smaller 
increments.  For example a six step cycle will discriminate between ∆p = +2 
and +6, whereas a four step cycle will find these to be identical. 
 

4.2.4.5 Coherence Transfer Pathways 

 In multiple-pulse NMR it is important to specify the coherences which 
should be present at each stage of the sequence.  This is conveniently done 
using a coherence transfer pathway (CTP) diagram.  Figure 7 shows such a 
diagram for the DQF COSY sequence. 

t1 t2

2
1
0

-1
-2  
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Figure 7.  The pulse sequence and coherence transfer pathway for DQF COSY. 

The solid lines under the sequence represent the coherence orders required 
during  each part of the sequence; as expected the pulses cause changes in 
coherence order.  In this example we have more that one coherence order 
present in some of the time periods; this is a common feature.  In addition 
we notice that the second pulse causes a transfer between orders ±1 and ±2, 
with all connections being present.  Again, such a "fanning out" of the 
coherence transfer pathway is common in many experiments. 
 There are a number of remarks to be made about the CTP diagram.  
Firstly, we should remember that this pathway is just the desired pathway 
and that it must be established separately that the pulse sequence and the 
spin system itself is capable of supporting the specified coherences.  Thus 
the DQF COSY sequence could be applied, along with a suitable phase 
cycle to select the specified pathway, to uncoupled spins but we would not 
expect to see any peaks in the spectrum.  Likewise, the sequence itself must 
be designed appropriately, the phase cycle cannot select something that the 
pulse sequence does not generate. 
 The second point to note is that the coherence transfer pathway must start 
with p = 0, that is the coherence order which corresponds to equilibrium 
magnetization.  In addition, the pathway has to end with |p| = 1 as it is only 
single quantum coherence that is observable.  If one uses quadrature 
detection, that is the method described in section 4.2.1 in which effectively 
both the x and y components of the magnetization are measured, it turns out 
that one is observing either p = +1 or –1.  The usual convention, which fits 
in with the normal convention for the sense of rotation, is to assume that we 
are detecting p = –1; we shall use this throughout. 
 Finally, we note that only a limited number of possible coherence orders 
are shown - in this case just those between –2 and +2.  As was discussed 
above we need to remember that the spin system may be capable of 
supporting higher orders of coherence and take this into account when 
designing the phase cycle. 
 

4.2.4.6 Refocusing Pulses 

 180° pulses give rise to a rather special coherence transfer pathway: they 
simply change the sign of the coherence order.  We can see how this arises 
by considering the effect of a 180° pulse to the operators Ii

+  and Ii
−  

 I Ii
I

i
ix±  →π #

 

The operator on the right simply has the opposite sign of coherence order to 
that on the left.  The same will be true of all of the raising or lowering 
operators of the different spins present and affected by the 180° pulse; the 
result is also valid, to within a phase factor, for any phase of the pulse (see 
exercises). 
 We can now derive the EXORCYLE phase cycle using this property.  
Consider a spin echo and the coherence transfer diagram shown in Fig. 8.   
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Figure 8.  A spin echo and the corresponding CTP. 

As discussed above, the CTP starts with coherence order 0 and ends with 
order –1.  Since the 180° pulse simply swaps the sign of the coherence 
order, the order +1 must be present prior to the 180° pulse.  Thus the 180° 
pulse is causing the transformation from +1 to –1, which is a ∆p of –2.  A 
phase cycle of four steps is easy to draw up 
 

step phase of 
180° pulse 

phase shift experienced 
by transfer with ∆p = –2 

equivalent phase 
= rx. phase 

1 0 0 0 
2 90 180 180 
3 180 360 0 
4 270 540 180 

 

The phase cycle is thus 0 1 2 3 for the 180° pulse and 0 2 0 2 for the 
receiver, which is just EXORCYCLE.  As the cycle has four steps, the 
pathway with ∆p = +2 is also selected (shown dotted in Fig. 8).  Although 
this pathway does not lead to an observable signal in this experiment its 
simultaneous selection in multiple pulse experiments where further pulses 
follow the spin echo is a useful feature.  An eight step cycle can be used to 
select the refocusing of double quantum in which the transfer is from p = +2 
to –2 (i.e. ∆p = –4) or vice versa (see exercises).  A two step cycle, 0 2 for 
the 180° pulse and 0 0 for the receiver, will select all even values of ∆p (see 
exercises). 
 

4.2.5 Lineshapes and Frequency Discrimination 

 The selection of a particular coherence transfer pathway is closely 
connected to two important aspects of multi-dimensional NMR experiments, 
that of frequency discrimination and lineshape selection.  By frequency 
discrimination we mean the steps taken to ensure that the signs of the 
frequencies of the coherences evolving the indirectly detected domains can 
be determined.  Typically this is done by using the States-Haberkorn-Ruben 
or TPPI methods.  Lineshape selection is closely associated with frequency 
discrimination, and a particular frequency discrimination method results in a 
particular lineshape in the indirectly detected domains.  It is clearly a priority 
to obtain the best lineshape possible, which generally means an absorption 
mode line.  The issues are the same for two- and higher-dimensional spectra 
so we will consider just the simplest case. 
 A typical two-dimensional experiment "works" by transferring a 
component of magnetization, say of spin i, present at the end of the 
evolution time, t1, through some mixing process to another spin, say j.  The 
size of the transferred component varies as a function of t1; it is said to be 
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modulated in t1.  If the modulation frequency is Ωi then the final steps of the 
two-dimensional experiment can be represented as 

 
cos cosΩ Ωi ix i jxt I t I1 1

mixing →
 [7] 

where we have assumed that the x-component is transferred.  The signal is 
detected during t2 in the usual way, using the detection scheme (called 
quadrature detection) described in section 4.2.1.  This results in a signal 
which can be considered as a complex quantity and can be written as 

 ( )cos expΩ Ωi jt t1 2i
 

Such a signal is said to be amplitude modulated in t1.  If we return to the 
mixing step sketched in Eqn. [7] we can reveal the underlying processes by 
re-writing the operators Iix in terms of the raising and lowering operators 

 [ ]1
2 1

1
2 1cos cosΩ Ωi i i i jxt I I t I+ −+  →mixing

 [8] 

The implication of this is that to obtain amplitude modulation coherence 
orders +1 and –1 must both contribute, and contribute equally, to the 
transferred signal.  This is the condition for obtaining amplitude modulation, 
and phase cycles for two- and higher-dimensional experiments need to be 
written in such a way as to retain "symmetrical pathways" in t1.  Once this 
has been achieved, frequency discrimination can be added by using one of 
the usual methods. 
 It is possible to use a phase cycle to achieve frequency discrimination.  
One simply writes a cycle which selects one coherence order, i.e. p = +1, 
during t1.  In effect what this achieves is the selection of transfer (mixing) 
from one operator, such as Ii

+ , rather than from the combination of Ii
+  and 

Ii
−  given in Eqn. [8].  Since under free evolution the operator Ii

+  simply 

acquires a phase term, of the form of exp(i Ωi t1), the resulting signal is 
phase modulated in t1 and thus frequency discrimination is achieved.  Such a 
procedure is called echo-/anti-echo selection, or P-/N-type selection.  It is 
illustrated in the following section for the simple COSY experiment. 
 

4.2.5.1 P- and N-Type COSY 

t1 t2

1
0

-1  

Figure 9.  The pulse sequence for COSY with the CTP for the P-type spectrum shown as the 
solid line, and that for the N-type spectrum as a dashed line. 
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 Figure 9 shows the simple COSY pulse sequence and two possible (and 
alternative) coherence transfer pathways.  Both pathways start with p = 0 
and end with p = –1, as described above.  They differ, however, in the sign 
of the coherence order present during t1.  In the first case (the solid line) the 
order present is p = –1, the same as present during acquisition.  Such a 
spectrum will be frequency discriminated, as was described above, and a 
diagonal peak at a positive offset in F2 will also be at a positive offset in F1.  
In contrast, a spectrum recorded such that p = +1 is present during t1 (the 
dotted line) will have opposite offsets in the two dimensions.  This arises 
because although the operators Ii

+  and Ii
−  both acquire a phase dependent 

on the offset Ωi, the sign of this phase modulation is opposite.  In the usual 
notation 

 ( )I t Ii

t I

i i

i iz± ± →
Ω

Ω1

1exp � i  

Selection of one of these pathways gives a signal which is phase modulated 
in both t1 and t2.  Subsequent two-dimensional Fourier transformation will 
give a peak in the spectrum which has the phase-twist lineshape.  This is not 
a suitable lineshape high-resolution work and thus this method of selection 
is not generally used in demanding applications. 
 The spectrum in which the sign of the modulating frequencies, and hence 
the sign of the coherence order, is the same in t1 and t2 is called the P-type or 
anti-echo spectrum.  Where these signs are opposite, one obtains the N-type 
or echo spectrum.  The echo/anti-echo terminology arises because the 
pathway leading to the echo spectrum has ∆p = –2 for the last pulse, which 
is analogous to the spin echo and indeed this pulse does result in partial 
refocusing of inhomogeneous broadening. 
 The phase cycles are simple to construct.  We first note a short-cut in that 
the first pulse can only generate transverse magnetization from z-
magnetization.  It is quite impossible for it to generate multiple quantum 
coherence.  Thus we can assume that the only p = ±1 are present during t1.  
Our attention is therefore focused on the last pulse.  In the case of the N-type 
spectrum we need to select the pathway with ∆p = –2, and we have already 
devised a cycle to do this in section 4.2.4.6 - it is simply EXORCYCLE in 
which the last 90° pulse goes 0 1 2 3 and the receiver goes 0 2 0 2.  To 
select the P-type spectrum the required pathway has ∆p = 0, for which the 
phase cycle is simply 0 1 2 3 on the final 90° pulse and 0 0 0 0 on the 
receiver, i.e. as ∆p = 0 the coherence pathway experiences no phase shifts.  
Of course the unwanted pathways will experience phase shifts and thus will 
be cancelled.  
 If multiple quantum coherence is present during t1 of a two-dimensional 
experiment the same principles apply, although smaller steps will be needed 
in order to select the required pathways (see exercises). 
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4.2.6 The Tricks of the Trade 

 

 

Figure 10  A simple CTP. 

 Suppose that we wish to select the simple pathway shown in Fig. 10.  At 
the first pulse ∆p is 1 and for the second pulse ∆p is –2.  We can construct a 
four-step cycle for each pulse, for example, but to select the overall pathway 
as shown these two cycles have to be completed independently of one 
another.  This means that there will be a total of sixteen steps, and that the 
phase of the receiver must be set according to the phase acquired by shifting 
both pulses.  The table shows how the appropriate receiver cycling can be 
determined 
 

step phase of 
1st 

pulse 

phase for 
∆p = 1 

phase of 
2nd 

pulse 

phase for 
∆p = –2 

total 
phase 

equivalent 
phase = rx. 

phase 

1 0 0 0 0 0 0 
2 90 –90 0 0 –90 270 
3 180 –180 0 0 –180 180 
4 270 –270 0 0 –270 90 

5 0 0 90 180 180 180 
6 90 –90 90 180 90 90 
7 180 –180 90 180 0 0 
8 270 –270 90 180 –90 270 

9 0 0 180 360 360 0 
10 90 –90 180 360 270 270 
11 180 –180 180 360 180 180 
12 270 –270 180 360 90 90 

13 0 0 270 540 540 180 
14 90 –90 270 540 450 90 
15 180 –180 270 540 360 0 
16 270 –270 270 540 270 270 

 
This is not as complex as it seems.  In the first four steps the second pulse 
has constant phase and the first simply goes through the four cardinal 
phases, 0 1 2 3.  As we are selecting ∆p = 1, the receiver simply runs 
backwards (the opposite to CYCLOPS), 0 3 2 1.  Steps 4 to 8 are the same 
except that the phase of the second pulse has been moved by 90°.  This 
shifts the required pathway with ∆p = –2 by 180° so the receiver phases for 
these steps are just 180° in advance of the corresponding first four steps, i.e. 
2 1 0 3.  The next four steps are a repeat of the first four as shifting the 
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phase of the second pulse by 180° results in a complete rotation of the 
coherence and so there is no net effect.  The final four steps are the same as 
the second four, except that the second pulse is shifted by 270°. 
 The key to devising these sequences is to simply work out the two four-
step cycles independently and the merge them together rather than trying to 
work on the whole cycle.  One writes down the first four steps, and then 
duplicates this four times as the second pulse is shifted.  You should get the 
same steps, in a different sequence, if you shift the phase of the second pulse 
in the first four steps (see exercises). 
 We can see that the total size of a phase cycle grows at an alarming rate.  
With only four phases for each pulse the number of steps grows as 4l where l 
is the number of pulses in the sequence.  A prospect of a 64 step phase cycle 
for simple experiments like NOESY and DQF COSY is a daunting one.  We 
may not wish to repeat each t1 increment 64 times, although of course if the 
spectrum were weak we may end up doing this anyway simply to improve 
the signal-to-noise ratio. 
 The "trick" to learn is that you need not phase cycle each pulse.  For 
various reasons there are shortcuts which can be used to reduce the number 
of pulses which need to be cycled.  To find out what these shortcuts are you 
need to understand how the pulse sequence works and what all the pulses 
do.  Sometimes, we can make shortcuts by ignoring certain possibilities, on 
the grounds that there are unlikely and that if they do occur they will 
sufficiently rare to be tolerable. 
 We will illustrate all of these points with reference to the DQF COSY 
pulse sequence, shown in Fig. 7 along with its coherence transfer diagram.  
We have already noted the need to retain the p = ±1 pathways during t1 in 
order to be able to compute an absorption mode spectrum.  Note also that 
the coherence orders ±1 in t1 are each connected to p = ±2 during the double 
quantum filter delay and that both of these double quantum levels are 
connected to p = –1 which is observed.  A detailed analysis of this sequence 
will show that in general all of these pathways are present and equally likely. 
 

4.2.6.1 The First Pulse 

 We have already commented on this in relation to the COSY experiment.  
Starting from equilibrium magnetization, Iiz, a simple pulse can generate 
only transverse magnetization with coherence orders ±1.  Thus it is not 
necessary to cycle this first pulse to select the pathway shown in Fig. 7.  We 
note here for completeness that the first pulse, if it is imperfect, may leave 
some magnetization along the z-axis and thus the fate of this magnetization 
needs to be considered in relation to the rest of the pulse sequence.  This 
residual z-magnetization is present during t1 as coherence order zero.  We 
will return to this in section 4.2.6.4. 
 

4.2.6.2 Grouping Pulses Together 

  In section 4.2.4.2 we noted that the phase shift of a particular pathway by 
– ∆p φ applied for the case where the transfer was brought about by a single 
pulse or by a group of pulses (and delays) whose phases are moved together.  
Essentially we are regarding the group of pulses as a single entity and may 
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phase cycle it in such a way as to select a particular value of ∆p.  It is 
important to realise, however, that the selection will simply be for a 
particular change in coherence order brought about by the whole group of 
pulses.  The phase cycle will not select for what coherence transfers take 
place in the group.  The idea of grouping pulses together thus has to be used 
carefully as it may lead to ambiguities. 
 In the DQF COSY sequence we have already noted that the pathways 
∆p = ±1 are inherently selected by the first pulse, so we should create no 
ambiguity by simply grouping the first two pulses together and cycling them 
as a unit to select the overall pathway ∆p = ±2.  Such a move will retain the 
symmetrical pathways required during t1 and the complex series of transfers 
brought about by the second pulse are selected inherently.  If we use a four-
step cycle to select ∆p = +2, we will also select –2 at the same time, which is 
just what we require. 
 The cycle is devised in the usual way 
 

step phase of first 
two pulses 

phase for 
∆p = +2 

phase for 
∆p = –2 

equivalent phase = 
rx. phase 

1 0 0 0 0 
2 90 –180 180 180 
3 180 –360 360 0 
4 270 –540 540 180 

 

The equivalent phase is the same for both pathways, ∆p = ±2.  The overall 
phase cycle is thus for the first two pulses to go 0 1 2 3, the third pulse to 
remain fixed and the receiver to go 0 2 0 2.  We shall see in the next section 
that this is sufficient to select the required pathway. 

 The four-step cycle also selects ∆p = ±6, so there is the possibility of 
signals arising due to filtration through six-quantum coherence.  In normal 
spin systems the amount of such high order coherences that can be generated 
is usually very small so that in practice we can discount this possibility. 
 Finally, we need to consider z-magnetization which may be left over after 
an imperfect initial 90° pulse or which arises due to relaxation during t1.  If 
signals are derived from such magnetization they give rise to peaks at F1 = 0 
in the spectrum simply because magnetization does not precess during t1 and 
so has no frequency label; such peaks are called axial peaks. 
 z-Magnetization present at the end of t1 will be turned to the transverse 
plane by the second 90° pulse, generating coherences ±1 as before.  The 
second pulse is being cycled 0 1 2 3 along with the receiver going 0 2 0 2; 
such a cycle suppresses the pathway ∆p = ±1 and so axial peaks are 
suppressed. 
 

4.2.6.3 The Last Pulse 

 The final pulse in a sequence has some special features which may be 
exploited when trying to reduce a phase cycle to its minimum.  This pulse 
may cause transfer to many different orders of coherence but only one of 
these, that with p = –1, is observable.  Thus,  if we have already selected, in 
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an unambiguous way, a particular set of coherence orders present just before 
the last pulse, no further cycling of this pulse is needed.  The fact that we 
can only observe p = –1 will "naturally" select what we want.  The DQF 
COSY phase cycle proposed in the previous section achieves this result in 
that it selects p = ±2 just before the last pulse.  No further cycling is 
required, therefore. 
 We can view this property of the final pulse in a different way.  Looking 
at the DQF COSY sequence we see that the two required pathways to be 
brought about by the final pulse have ∆p= –3 and +1.  As the only detectable 
signal has p = –1, the selection of these two pathways will guarantee that the 
only contributors to the observed signal will be from coherences with orders 
p =  ±2 present just before this pulse.  Cycling just the last pulse will thus 
achieve all that we require.  In section 4.2.6 we have already devised a phase 
cycle to select ∆p = +1, the pulse goes 0 1 2 3 and the receiver goes 
0 3 2 1.  As this is a four-step cycle we see immediately that ∆p = –3 is also 
selected, which is what is required.  Other, higher order pathways are 
selected, such as ∆p = +5 or –7; these can most probably be ignored safely. 
 Finally we ought to consider the fate of any z-magnetization present at 
the end of t1.  This is turned to coherence orders ±1 by the second pulse and 
so for it to be observable (i.e. p = –1) during acquisition it must undergo a 
transfer by the last pulse of ∆p = 0 or –2.  Both of these are blocked by the 
phase cycle, so axial peaks are suppressed. 
 We now have two alternative four step cycles for DQF COSY;  in section 
4.2.6.5, we will show that despite their different origins they are more or 
less the same. 
 

4.2.6.4 Axial Peak Suppression 

 Sometimes we want to write a phase cycle in which there is an added 
explicit step to suppress axial peaks.  In principle and strictly according to 
theory this is not always necessary as the magnetization that leads to axial 
peaks is often suppressed by the phase cycle used for coherence selection. 
 A simple two step phase cycle suffices for this suppression.  The first 
pulse is supposed to result in the pathway ∆p = ±1 and such a pathway is 
selected, along with others, using the two step cycle in which the pulse goes 
0 2 and the receiver goes 0 2 also.  Any magnetization which arrives at the 
receiver but which has not experienced the phase shift from the first pulse 
will be cancelled.  The cycle thus eliminates all peaks in the spectrum, such 
as axial peaks, which do not arise from the first pulse.  Of course this two-
step cycle does not select exclusively ∆p = ±1, but most importantly it does 
reject ∆p = 0 which is one likely source of axial peaks. 
 

4.2.6.5 Shifting the Whole Sequence 

 If we group all of the pulses in the sequence together and regard them as 
a unit they simply achieve the transformation from equilibrium 
magnetization, p = 0, to observable magnetization, p = –1.  They could be 
cycled as a group to select this pathway with ∆p = –1, that is the pulses 
going 0 1 2 3 and the receiver going 0 1 2 3.  This is of course the 
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CYCLOPS phase cycle.  If time permits we sometimes add CYCLOPS-style 
cycling of all of the pulses in the sequence so as to suppress some artefacts 
associated with imperfections in the receiver.  Adding such cycling does, of 
course, extend the phase cycle by a factor of four. 
 This idea of shifting all of the pulses in the sequence has other 
applications.  Consider the DQF COSY phase cycle proposed in section 
4.2.6.3: 
 

step 1st pulse 2nd pulse 3rd pulse receiver 

1 0 0 0 0 
2 0 0 90 270 
3 0 0 180 180 
4 0 0 270 90 

  
Suppose we decide, for some reason, that we do not want to shift the 
receiver phase, but want to keep it fixed at phase zero.  If we add 90° to the 
phase of all the pulses in step 2, then we will need also to add 90° to the 
receiver as the overall transformation is ∆p = –1; this puts the receiver phase 
at 0°.  In the same way we can add 180° to all the pulses and the receiver for 
step 3 and 270° for step 4.  Once all the phases are reduced to the usual 
range of 0 to 360° we have 
 

step 1st pulse 2nd pulse 3rd pulse receiver 

1 0 0 0 0 
2 90 90 180 0 
3 180 180 0 0 
4 270 270 180 0 

 
The result looks rather strange, as we seem to be shifting the phase of all of 
the pulses at the same time.  However, we know that, in a formal way, it is 
exactly the same cycle as was devised in section 4.2.6.3  By writing it in this 
way, however, the way in which the cycle works is rather obscured. 
 In the case of DQF COSY there is probably no reason for adopting this 
procedure.  However, a case where it might be useful is when a phase cycle 
calls for phase shifts of other than multiples of 90° for the receiver.  Some 
spectrometers allow fine resolution phase shifting of the pulse phase, but 
only allow 90° steps for the receiver.  In such cases the required phase shifts 
of the received can be generated in effect by moving the phase of all the 
pulses until the receiver phases are at multiples of 90° (see exercises). 
 We can play one last trick with the phase cycle given in the table.  As the 
third pulse is required to achieve the transformation ∆p = –3 or +1 we can 
alter its phase by 180° and compensate for this by shifting the receiver by 
180° also.  We apply this trick to the phase of the third pulse for steps 2 and 
4 to give the cycle 
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step 1st pulse 2nd pulse 3rd pulse receiver 

1 0 0 0 0 
2 90 90 0 180 
3 180 180 0 0 
4 270 270 0 180 

 
This is just the cycle proposed in section 4.2.6.2.  We have then three 
different phase cycles, each of which, despite looking rather different 
achieves the same result. 
 

4.2.7 More Examples 

4.2.7.1 Homonuclear Experiments 

t1 t2

2
1
0

-1
-2  

Figure 11  The pulse sequence and CTP for double-quantum spectroscopy. 

Double Quantum Spectroscopy: A simple sequence for double quantum 
spectroscopy is shown in Fig. 11; note the retention of both pathways with 
p = ±1 during the initial spin echo and with p = ±2 during t1.  There are a 
number of possible phase cycles for this experiment and, not surprisingly, 
they are essentially the same as those for DQF COSY.  If we regard the first 
three pulses as a unit, then they are required to achieve the overall 
transformation ∆p = ±2, which is the same as that for the first two pulses in 
the DQF COSY sequence.  Thus the same cycle can be used with these three 
pulses going 0 1 2 3 and the receiver going 0 2 0 2.  Alternatively the final 
pulse can be cycled 0 1 2 3 with the receiver going 0 3 2 1, as in section 
4.2.6.3. 
 Both of these phase cycles can be extended by EXORCYCLE phase 
cycling of the 180° pulse, resulting in a total of 16 steps (see exercises). 
 

t1 t2

1
0

-1

m ix

 

Figure 12.  The pulse sequence and CTP for NOESY. 

NOESY: The sequence is shown in Fig. 12.  Again it can be viewed in two 
ways.  If we group the first two pulses together they are required to achieve 
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the transformation ∆p = 0 and this leads to a four step cycle in which the 
pulses go 0 1 2 3 and the receiver remains fixed as 0 0 0 0.  In this 
experiment axial peaks arise due to z-magnetization recovering during the 
mixing time, and this cycle will not suppress these contributions as there is 
no suppression of the pathway ∆p = –1 caused by the last pulse.  Thus we 
need to add axial peak suppression, which is conveniently done by adding 
the simple cycle 0 2 on the first pulse and the receiver.  The final 8 step 
cycle is 1st pulse: 0 1 2 3  2 3 0 1, 2nd pulse: 0 1 2 3  0 1 2 3, 3rd pulse 
fixed, receiver: 0 0 0 0  2 2 2 2. 

 An alternative is to cycle the last pulse to select the pathway ∆p = –1, 
giving the cycle 0 1 2 3 for the pulse and 0 1 2 3 for the receiver.  Once 
again, this does not discriminate against z-magnetization which recovers 
during the mixing time, so a two step phase cycle to select axial peaks needs 
to be added (see exercises). 
 

4.2.7.2 Heteronuclear Experiments 

  The phase cycling for most heteronuclear experiments tends to be rather 
trivial in that the usual requirement is simply to select that component which 
has been transferred from one nucleus to another.  We have already seen in 
section 4.2.3 that this simply boils down to a 0 2 phase cycle on a pulse 
accompanied by the same on the receiver i.e. a difference experiment.  The 
choice of which pulse to cycle depends more on practical problems 
associated with difference spectroscopy than with any fundamental 
theoretical considerations. 
 
HMQC:  The pulse sequence for HMQC is given in Fig. 13, along with a 
coherence transfer pathway.  We have written a separate pathway for the two 
nuclear species, thus the heteronuclear multiple quantum coherence which 
gives the sequence its name appears as a combination of pI = ±1 and pS = ±1.  
Again, all symmetrical pathways are retained in order to give optimum 
sensitivity and pure phase lineshapes. 

t1

t2

1
0

-1

1
0

-1

∆∆
I

S

p I

p S
 

Figure 13.  The pulse sequence and CTP for HMQC.  Separate pathways are shown for the I 
and S spins. 

 The essential result we need to achieve in this sequence is to suppress the 
signals arising from I spins which are not coupled to S spins.  This is 
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achieved by cycling the phase of a pulse which affects the phase of the 
required coherence and which does not affect that of the unwanted 
coherence.  The obvious targets are the two S spin 90° pulses, each of which 
is required to give the transformation ∆pS = ±1.  A two step cycle with either 
of these pulses going 0 2 and the receiver doing the same will select this 
pathway and, by difference, suppress any I spin magnetization which has not 
been passed into multiple quantum coherence. 
 It is also common to add EXORCYCLE phase cycling to the I spin 180° 
pulse, giving a cycle with eight steps overall.  Axial peaks should be 
suppressed by the two step cycle of one of the S spin 90° pulses.  It is clear 
that for heteronuclear experiments the coherence transfer pathway approach 
is not really necessary. 
 

4.2.8 Conclusions 

 We have seen that phase cycling is a relatively straightforward method of 
selecting a particular coherence transfer pathway.  Even at a theoretical level 
the method sometimes fails when we are trying to select a complex pathway, 
particularly one in which we are trying to select may parallel pathways (see 
exercises); it may not be possible to write a phase cycle which selects the 
required pathway. 
 In practice phase cycling suffers from two major problems.  The first is 
that the need to complete the cycle imposes a minimum time on the 
experiment.  In two- and higher-dimensional experiments this minimum 
time can become excessively long, far longer than would be needed to 
achieve the desired signal-to-noise ratio.  In such cases the only way of 
reducing the experiment time is to record fewer increments of the indirect 
times which has the undesirable consequence of reducing the limiting 
resolution in these dimensions. 
 The second problem is that phase cycling always relies on recording all 
possible contributions and then cancelling out the unwanted ones by 
combining subsequent signals.  If the spectrum has high dynamic range, or if 
spectrometer stability is a problem, this cancellation is less than perfect.  
The result is unwanted signals appearing in the spectrum and t1-noise in 
two-dimensional spectra.  These problems become acute when dealing with 
proton detected heteronuclear experiments on natural abundance samples, or 
in trying to record spectra with intense solvent resonances. 
 Both of these problems are alleviated to a large extent by moving to an 
alternative method of selection, the use of field gradient pulses which are the 
subject of the next section.  However, this alternative method is not without 
its own difficulties and it is by no means a universal panacea. 
 Neither phase cycling nor field gradient pulses can discriminate between 
z-magnetization and homonuclear zero-quantum coherence, both of which 
have coherence order zero.  There are methods which can be used to 
suppress the contribution from zero-quantum coherence; these are all based 
on the fact that this coherence acquires a phase during a delay or period of 
spin-locking.  There thus exists the possibility of cancellation or dephasing.  
Further details can be found in section 4.3.7.1. 
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4.3.1 Introduction 

 Field gradient pulses can be used to select particular coherence transfer 
pathways and, as we shall see, selection using gradients offers some 
advantages when compared to selection using phase cycling.  During a 
pulsed field gradient the applied magnetic field is made deliberately spatially 
inhomogeneous for a short time.  As a result, transverse magnetization and 
other coherences dephase across the sample and are apparently lost.  
However, this loss can be reversed by the application of a subsequent 
gradient which undoes the dephasing process thus restoring the 
magnetization or coherence.  The crucial property of the dephasing process 
is that it proceeds at a different rate for different coherences.  For example, 
double-quantum coherence dephases twice as fast as single-quantum 
coherence.  Thus, by applying gradient pulses of different strengths or 
durations it is possible to refocus coherences which have, for example, been 
changed from single- to double-quantum by a radiofrequency pulse. 
 Gradient pulses are introduced into the pulse sequence in such a way that 
only the wanted signals are observed in each experiment.  Thus, in contrast 
to phase cycling, there is no reliance on subtraction of unwanted signals, and 
it can thus be expected that the level of t1-noise will be much reduced.  
Again in contrast to phase cycling, no repetitions of the experiment are 
needed, enabling the overall duration of the experiment to be set strictly in 
accord with the required resolution and signal-to-noise ratio. 
 The properties of gradient pulses and the way in which they can be used 
to select coherence transfer pathways have been known since the earliest 
days of multiple-pulse NMR.  However, their wide application in the past 
has been limited by technical problems which made it difficult to use such 
pulses in high-resolution NMR.  The problem is that switching on the 
gradient pulse induces currents in any nearby conductors, such as the probe 
can and magnet bore tube.  These induced currents, called eddy currents, 
themselves generate magnetic fields which perturb the NMR spectrum.  
Typically, the eddy currents are large enough to disrupt severely the 
spectrum and can last many hundreds of milliseconds.  It is thus impossible 
to observe a high-resolution spectrum immediately after the application of a 
gradient pulse.  Similar problems have beset NMR imaging experiments and 
have led to the development of shielded gradient coils which do not produce 
significant magnetic fields outside the sample volume and thus minimise the 
generation of eddy currents.  The use of this technology in high-resolution 
NMR probes has made it possible to observe spectra within tens of 
microseconds of applying a gradient pulse.  With such apparatus, the use of 
field gradient pulses in high resolution NMR is quite straightforward, a fact 
first realised and demonstrated by Hurd whose work has pioneered this 
whole area. 
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4.3.2 Selection with Gradient Pulses 

4.3.2.1 Dephasing Caused by Gradients 

 A field gradient pulse is a period during which the B0 field is made 
spatially inhomogeneous; for example an extra coil can be introduced into 
the sample probe and a current passed through the coil in order to produce a 
field which varies linearly in the z-direction.  We can imagine the sample 
being divided into thin discs which, as a consequence of the gradient, all 
experience different magnetic fields and thus have different Larmor 
frequencies.  At the beginning of the gradient pulse the vectors representing 
transverse magnetization in all these discs are aligned, but after some time 
each vector has precessed through a different angle because of the variation 
in Larmor frequency.  After sufficient time the vectors are disposed in such a 
way that the net magnetization of the sample (obtained by adding together 
all the vectors) is zero.  The gradient pulse is said to have dephased the 
magnetization. 
 It is most convenient to view this dephasing process as being due to the 
generation by the gradient pulse of a spatially dependent phase.  Suppose 
that the magnetic field produced by the gradient pulse, Bg, varies linearly 
along the z-axis according to 

 
B Gzg =

 [9] 

where G is the gradient strength expressed in, for example, T⋅m–1 or G⋅cm–

1; the origin of the z-axis is taken to be in the centre of the sample.  At any 
particular position in the sample the Larmor frequency, ωL(z), depends on 
the applied magnetic field, B0, and Bg 

 
( ) ( )ω γ γL 0 g 0= + = +B B B Gz

  , [10] 

where γ is the gyromagnetic ratio.  After the gradient has been applied for 
time t, the phase at any position in the sample, Φ(z), is given by 

( ) ( )Φ z B Gz t= +γ 0 .  The first part of this phase is just that due to the usual 

Larmor precession in the absence of a field gradient.  Since this is constant 
across the sample it will be ignored from now on (which is formally the 
same result as viewing the magnetization in a frame of reference rotating at 
γB0).  The remaining term γGzt is the spatially dependent phase induced by 
the gradient pulse. 
 We imagine applying a gradient pulse to pure x-magnetization, giving the 
following evolution at any particular position in the sample 

 I Gzt I Gzt Ix

GztI

x y
zγ γ γ →  +cos( ) sin( )    . [11] 

The total x-magnetization in the sample, Mx, is found by adding up the 
magnetization from each of the thin discs, which is equivalent to the integral 
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 M t
r

Gzt zx

r

r

( ) cos( )
max

max

max

=
−

∫1

1

2

1

2

γ d  [12] 

where it has been assumed that the sample extends over a region ± 1
2 rmax.  

Evaluating the integral gives an expression for the decay of x-magnetization 
during a gradient pulse 

 M t
Gr t

Gr tx ( )
sin( )max

max

=
2

1
2

γ

γ
  . [13] 
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Figure 14.  The solid line shows the decay of magnetization due to the action of a gradient 
pulse.  The dashed line is an approximation, valid at long times, for the envelope of the 

decay. 

Figure 14 shows a plot of Mx(t) as a function of time; the oscillations in the 
decaying magnetization are imposed on an overall decay which for long 
times is given by 2/(γGtrmax).  Equation [13] embodies the obvious points 
that the stronger the gradient (the larger G) the faster the magnetization 
decays and that magnetization from nuclei with higher gyromagnetic ratios 
decays faster.  It also allows a quantitative assessment of the gradient 
strengths required: the magnetization will have decayed to a fraction α of its 

initial value after a time of the order of ( )2 γ αG rmax  (the relation is strictly 

valid for α << 1).  For example, if it is assumed that rmax is 1 cm, then a 2 
ms gradient pulse of strength 0.37 T⋅m–1 (37 G⋅cm–1) will reduce proton 
magnetization by a factor of 1000.  Gradients of such strength are readily 
obtainable using modern shielded gradient coils that can be built into high 
resolution NMR probes 
 This discussion now needs to be generalised for the case of a field 
gradient pulse whose amplitude is not constant in time, and for the case of 
dephasing a general coherence of order p.  The former modification is of 
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importance as for instrumental reasons the amplitude envelope of the 
gradient is often shaped to a smooth function.  In general after applying a 
gradient pulse of duration τ  the spatially dependent phase, Φ(r,τ) is given 
by 

 Φ( , ) ( )r sp B rgτ γ τ=  [14] 

The proportionality to the coherence order comes about due to the fact that 
the phase acquired as a result of a z-rotation of a coherence of order p 
through an angle φ is pφ, (see Eqn. [1] in section 4.2.4.1).  In  Eqn. [14] s is 
a shape factor: if the envelope of the gradient pulse is defined by the 

function A(t), where A t( ) ≤ 1, s is defined as the area under A(t) 

 

s = 1
τ

A t( )
0

τ

∫  dt

  . [15] 

The shape factor takes a particular value for a certain shape of gradient, 
regardless of its duration.  A gradient applied in the opposite sense, that is 
with the magnetic field decreasing as the z-coordinate increases rather than 
vice versa, is described by reversing the sign of s.  The overall amplitude of 
the gradient is encoded within Bg.   
 In the case that the coherence involves more than one nuclear species, 
Eqn. [14] is modified to take account of the different gyromagnetic ratio for 
each spin, γi, and the (possibly) different order of coherence with respect to 
each nuclear species, pi: 

 Φ( , ) ( )r sB r pg i i
i

τ τ γ= ∑    . [16] 

From now on we take the dependence of Φ on r and t, and of Bg on r as 
being implicit, and will not write these explicitly. 
 

4.3.2.2 Selection by Refocusing 

 The method by which a particular coherence transfer pathway is selected 
using field gradients is illustrated in Fig.15 (a).   
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Figure 15  Pulse sequences and associated coherence transfer pathways illustrating 
coherence selection using gradients.  The radiofrequency pulses are given on the line 

marked RF, solid rectangles indicate 90° pulses and open rectangles indicate 180° pulses; 
the pulse  phase is x unless otherwise specified.  Gradient pulses are indicated by the 

rectangles on the line marked g. 

The first gradient pulse encodes a spatially dependent phase, Φ1 and the 
second a phase Φ2 where 

 
Φ Φ1 1 1 1 2 2 2 2= =s p B s p Bg,1 g,2andτ τ

  . [17] 

After the second gradient the net phase is (Φ1 + Φ2).  To select the pathway 
involving transfer from coherence order p1 to coherence order p2, this net 
phase should be zero; in other words the dephasing induced by the first 
gradient pulse is undone by the second.  The condition (Φ1 + Φ2) = 0 can be 
rearranged to  

 

s B

s B

p

p
1 1

2 2

2

1

g,1

g,2

τ
τ

=
–

  . [18] 

For example, if p1 = +2 and p2 = – 1, refocusing can be achieved by making 
the second gradient either twice as long (τ2 = 2 τ1), or twice as strong (Bg,2 = 
2 Bg,1) as the first; this assumes that the two gradients have identical shape 
factors.  Other pathways remain dephased; for example, assuming that we 
have chosen to make the second gradient twice as strong and the same 
duration as the first, a pathway with p1 = +3 to p2 = –1 experiences a net 
phase 

 
Φ Φ1 2 1 2 1 13+ = =sB sp B sBg,1 g,2 g,1τ τ τ–

  . [19] 

Provided that this spatially dependent phase is sufficiently large, according 
the criteria set out in the previous section, the coherence arising from this 
pathway remains dephased and is not observed.  To refocus a pathway in 
which there is no sign change in the coherence orders, for example, p1 = – 2 
to p2 = – 1, the second gradient needs to be applied in the opposite sense to 
the first; in terms of Eqn. [18] this is expressed by having s2 = – s1. 
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 The procedure can easily be extended to select a more complex coherence 
transfer pathway by applying further gradient pulses as the coherence is 
transferred by further pulses, as illustrated in Fig. 15 (b).  The condition for 
refocusing is again that the net phase acquired by the required pathway be 
zero, which can be written formally as 

 
s p Bi i i

i
g,iτ∑ = 0

  . [20] 

With more than two gradients there are many ways in which a given 
pathway can be selected.  For example, the second gradient may be used to 
refocus the first part of the required pathway, leaving the third and fourth to 
refocus another part.  Alternatively, the pathway may be consistently 
dephased and the magnetization only refocused by the final gradient, just 
before acquisition. 
 At this point it is useful to contrast the selection achieved using gradient 
pulses with that achieved using phase cycling.  From Eqn. [18] it is clear 
that a particular pair of gradient pulses selects a particular ratio of coherence 
orders; in the above example any two coherence orders in the ratio –2 : 1 or 
2 : – 1 will be refocused.  This selection according to ratio is in contrast to 
the case of phase cycling in which a phase cycle consisting of N steps of 2π 
/N radians selects a particular change in coherence order ∆p = p2 – p1, and 
further pathways which have ∆p = (p2 – p1) ± mN, where m = 0, 1, 2 ... 
 It is straightforward to devise a series of gradient pulses which will select 
a single coherence transfer pathway.  It cannot be assumed, however, that 
such a sequence of gradient pulses will reject all other pathways i.e. leave 
coherence from all other pathways dephased at the end of the sequence.  
Such assurance can only be given be analysing the fate of all other possible 
coherence transfer pathways under the particular gradient sequence 
proposed.  In complex pulse sequences there may also be several different 
ways in which gradient pulses can be included in order to achieve selection 
of the desired pathway.  Assessing which of these alternatives is the best, in 
the light of the requirement of suppression of unwanted pathways and the 
effects of pulse imperfections may be a complex task. 
 In this section it has been  shown that a single coherence transfer pathway 
can be selected with the aid of gradient pulses.  However, it is not unusual to 
want to select two or more pathways simultaneously.  A good example of 
this is the double-quantum filter pulse sequence element shown in Fig. 16 
(a). 
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Figure 16  Pulse sequences and pathways for double-quantum filters. 

The ideal pathway, shown in (a), preserves coherence orders p = ± 2 during 
the inter-pulse delay.  It can be shown that the first 90° pulse generates equal 
amounts of coherence orders + 2 and – 2, and these contribute equally to the 
final observable signal.  Gradients can be used to select the pathway – 2 to – 
1 or + 2 to – 1, shown in (b) and (c) respectively.  However, no combination 
of gradients can be found which will select simultaneously both of these 
pathways.  In contrast, it is easy to devise a phase cycle which selects both 
of these pathways (section 4.2.6.2).  Thus, selection with gradients will in 
this case result in a loss of half of the available signal when compared to an 
experiment of equal length which uses selection by phase cycling.  Such a 
loss in signal is, unfortunately, a very common feature when gradients are 
used for pathway selection. 
 Coherence order zero, comprising z-magnetization, zz terms and 
homonuclear zero-quantum coherence, does not accrue any phase during a 
gradient pulse.  Thus it can be separated from all other orders simply by 
applying a single gradient.  In a sense, however, this is not a gradient 
selection process; rather it is a simply suppression of all other coherences.  
In contrast to experiments where selection is achieved, there is no inherent 
sensitivity loss. 
 The simplest experimental arrangement generates a gradient in which the 
magnetic field varies in the z direction, however it is also possible to 
generate gradients in which the field varies along x or y.  Clearly, the 
spatially dependent phase generated by a gradient applied in one direction 
cannot be refocused by a gradient applied in a different direction.  In 
sequences where more than one pair of gradients are used, it may be 
convenient to apply further gradients in different directions to the first pair, 
so as to avoid the possibility of accidentally refocusing unwanted coherence 
transfer pathways.  Likewise, a gradient which is used to destroy all 
magnetization and coherences can be applied in a different direction to 
gradients subsequently used for pathway selection. 
 

4.3.2.3 Spin Echoes 

 Refocusing pulses play an important role in multiple-pulse NMR 
experiments and so the interaction between such pulses and field gradient 
pulses will be explored in some detail.  A perfect refocusing pulse achieves 
two effects.  Firstly, it changes the sign of the order of any coherences 
present, p → – p.  Secondly, z-magnetization is inverted Iz → – Iz.  A perfect 
180° pulse, applied about any axis, is an example of such a refocusing pulse.  
An imperfect refocusing pulse will cause transfers to other coherence orders 
than – p, and may generate transverse magnetization from any z-
magnetization present.  We start out the discussion by considering the 
refocusing of coherences. 
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Figure 17  Spin echoes and related sequences.  In heteronuclear experiments the 
radiofrequency pulses applied to the I and S spins are indicated on the lines so marked 

 The effect of an imperfect refocusing pulse can be considered by 
factoring the sample into a part which experiences perfect refocusing and a 
part which does not.  The refocused part can be selected by placing a 
gradient pulse on either side of the refocusing pulse, as shown in Fig. 17 (a).  
The net phase at the end of such a sequence is 

 
( )Φ Ω Ω2τ δ γ τ δ γ τ= + + +( ) ( ') 'p psp B sp Bg g  [21] 

where Ω(p) is the frequency with which coherence of order p evolves in the 
absence of a gradient; note that Ω(–p) = – Ω(p).  This net phase is zero if, 
and only if, p' = – p.  With sufficiently strong gradients all other pathways 
remain dephased and the gradient sequence has thus selected the perfectly 
refocused component.  In addition, any transverse magnetization created by 
an imperfect refocusing pulse is also dephased.  As is expected for a spin 
echo, the underlying evolution of the coherence (as would occur in the 
absence of a gradient) for the entire time 2δ is also refocused. 
 If a refocusing pulse is used in its second context, that of inversion of z 
magnetization, the considerations are somewhat different.  Formally, we 
could regard the problem as selecting the pathway p = 0 → p' = 0, in which 
case any combination of gradients would be suitable.  However, in practice a 
gradient combination should be used which gives the maximum dephasing 
effect to other coherences.  Assuming that the refocusing pulse still changes 
the sign of the larger fraction of the coherences in the sample, the greatest 
dephasing is obtained when the second gradient is applied in the opposite 
sense to the first, as is shown in Fig. 17 (b). 
 In heteronuclear experiments a refocusing pulse is often used to remove 
the effects of the heteronuclear coupling over a period.  The role of such a 
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pulse when applied to spins S is simply to invert the sign of any operator 
products involving Sz; in other words to act as an inversion pulse for S.  This 
function is selected using the gradient sequence shown in Fig. 17 (c), which 
in analogous to (b).  Of course, any coherences on the spins I will be 
dephased by the first gradient, but these coherences will be rephased by the 
second gradient as it is applied in the opposite sense.  The net effect is that 
the I spin shift evolves for 2δ, but the IS coupling is refocused. 
 If a refocusing pulse is perfect, the inclusion of gradient pulses as shown 
in Fig. 17 (a) - (c) does not reduce the size of the ultimately observed signal.  
This is in contrast to most other situations in which selection with gradients 
results in an inherent loss of signal.  However, if the refocusing pulse is 
imperfect there will be a loss of signal reflecting that part of the sample 
which does not experience a perfect refocusing pulse. 
 

4.3.2.4 Phase Errors 

 In the selection process the spatially dependent phase created by a 
gradient pulse is subsequently refocused by a second gradient pulse.  
However, the underlying evolution due to chemical shifts (offsets) and 
couplings is not refocused, and phase errors will accumulate due to the 
evolution of these terms.  Since gradient pulses are typically of a few 
milliseconds duration, these phase errors are far from insignificant. 
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Figure 18.  A DQF COSY sequence with gradient selection. 

 In multi-dimensional NMR the uncompensated evolution of offsets 
during gradient pulses has disastrous effects on the spectra.  This is 
illustrated here for the double-quantum filtered COSY pulse sequence using 
the gradient pulses shown in Fig. 18.  It will be assumed that only the 
indicated pathway survives and so the spatially dependent part of the 
evolution due to the gradients will be ignored.  Thus, for a two spin system, 
coherence order of + 2 present during the filter evolves as follows during the 
first gradient pulse 

 ( )( )I I I I iI Iz z

1 2 1 2 1 2 1
1 1 1 2 1 2

+ +
+

+ + →  +Ω Ω Ω Ωτ τ τexp –
  , [22] 

where Ω1 and Ω2 are the offsets of spins 1 and 2, respectively.  After the 
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final 90° pulse and the second gradient the observable terms on spin 1 are 

 
( )( )[ ]i

x z y zi I I I I2 1 2 1 1 2 1 2 1 2 1 22 2exp – cos sinΩ Ω Ω Ω+ +τ τ τ
 [23] 

where it has been assumed that τ2 is sufficiently short that evolution of the 
coupling can be ignored.  It is clearly seen from Eqn. [23] that, due to the 
evolution during τ2, the multiplet observed in the F2 dimension will be a 
mixture of dispersion and absorption anti-phase contributions.  In addition, 
the exponential term gives an overall phase shift due to the evolution during 
τ1.  The phase correction needed to restore this multiplet to absorption 
depends on both the frequency in F2 and the double-quantum frequency 
during the first gradient.  Thus, no single linear frequency dependent phase 
correction could phase correct a spectrum containing many multiplets.  The 
need to control these phase errors is plain.   
 The general way to minimise these problems is to associate each gradient 
pulse with a refocusing pulse as shown in Fig. 17 (e) and (f).  Using the 
results from the previous section it is easily seen that sequence (e) generates 
a net phase of spγBgτ; (f) gives the same result with a sign change.  The 
desired effect of refocusing the evolution due to the offset and not that due 
to the gradient has been achieved.  In sequence (f) the gradient is split into 
two halves by the refocusing pulse, and in order to avoid the second gradient 
refocusing the effect of the first, the two gradients have to be applied in 
opposite senses.  Of these two options (f) is the most time efficient as the 
gradient is applied for the entire duration, whereas option (e) lengthens the 
experiment by doubling the time needed for each gradient; if relaxation is 
rapid, option (f) is the method of choice.  As was explained in the previous 
section, if the refocusing pulse is imperfect coherences undergoing transfers 
other than the required p → – p should be dephased by (f).  However, 
sequence (e) will dephase the results of only some of these unwanted 
coherence transfers. 
 In many pulse sequences there are periods during which the evolution of 
offsets is refocused.  The evolution of offsets during a gradient pulse placed 
within such a period will therefore also be refocused, making it unnecessary 
to include extra refocusing pulses.  Likewise, a gradient may be placed 
during a "constant time" evolution period of a multi-dimensional pulse 
sequence without introducing phase errors in the corresponding dimension; 
the gradient simply becomes part of the constant time period.  This approach 
is especially useful in the constant time three- and four-dimensional 
experiments used to record spectra of nitrogen-15, carbon-13 labelled 
proteins.  
 

4.3.3 Lineshapes in Multi-Dimensional Spectra 

 The use of gradient pulses during the incremented time of a multi-
dimensional NMR experiment has profound effects on the lineshapes in the 
resulting spectrum .  To illustrate this we will discuss the simple COSY 
experiment and restrict ourselves to a single spin with offset Ω.  The 
principles remain the same for more complex experiments. 
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Figure 19.  Pulse sequences for COSY, with and without gradient selection. 

 Figure 19 (a) shows the basic COSY pulse sequence; a simple analysis of 
this sequence for a one line spectrum gives the observed signal Sc(t1,t2) as 

 ( ) ( ) ( ) ( )S t t t t T i t t Tc 1 2 1 1 2 2 2 2, cos exp – / exp exp – /= Ω Ω  [24] 

where T2 is the (assumed) transverse relaxation time of the spin and 
quadrature detection in t2 is also assumed.  The crucial feature of this signal 
is that it is cosine modulated in t1 and since cos(Ωt1) = cos(–Ωt1), the 
modulation of the signal in t1 is invariant to the sign of the offset, Ω.  As a 
result the spectrum is said to lack frequency discrimination in the F1 
dimension.  Since the receiver reference is normally placed in the middle of 
the spectrum, resonances will have both positive and negative offsets, but 
these are not distinguished in the F1 dimension leading to a confused and 
overlapped spectrum. 
 All methods of achieving frequency discrimination are based on 
recording a separate signal, Ss, which is sine modulated in t1.  In the COSY 
experiment this signal is achieved simply by changing the phase of the first 
pulse by 90°, giving 

 ( ) ( ) ( ) ( )S t t t t T i t t Ts 1 2 1 1 2 2 2 2, sin exp – / exp exp – /= Ω Ω   . [25] 

The way in which Sc and Ss are used to generate a frequency discriminated 
spectrum is as follows.  The real and imaginary parts of the Fourier 
transform of this exponentially damped signal are lines with the absorption 
and dispersion lorentzian lineshapes, denoted A(ω) and D(ω) respectively 

 ( ) ( )[ ] ( ) ( )F exp exp – /± = +± ±i t t T A iDΩ 2 2 2 ω ω
 [26] 
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and F[S(t)] denotes the Fourier transform of S(t).  Thus the transforms with 
respect to t2 of Sc and Ss are 

 ( ) ( )[ ] ( ) ( ) ( ){ }S t S t t t t T A iDc c1 2 1 2 1 1 2 2 2, , cos exp – /ω ω ω= F2 = ++ +Ω
 [28] 

 ( ) ( )[ ] ( ) ( ) ( ){ }S t S t t t t T A iDs s1 2 1 2 1 1 2 2 2, , sin exp – /ω ω ω= F2 = ++ +Ω
  .[29] 

The real part of Sc(t1,ω2) is combined with i times the real part of Ss(t1,ω2) to 
yield the signal S(t1,ω2) whose transform is the required spectrum 

 

( ) ( )[ ] ( )[ ]
( ) ( ) ( )

S t S t i S t

i t t T A

1 2 1 2 1 2

1 1 2 2

, Re , Re ,

exp exp – /

ω ω ω

ω

= +

= +

c s

Ω  [30] 

 ( ) ( )[ ] ( ) ( ){ } ( )S S t A iD Aω ω ω ω ω ω1 2 1 2 1 1 2, ,= F1 = ++ + +   . [31] 

The real part of S(ω1,ω2) is a spectrum with the favourable double 
absorption lineshape, A+(ω1)A+(ω2).  In addition, inspection of Eqn. [30] 
shows that the spectrum is frequency discriminated as the modulation in t1 is 
sensitive to the sign of Ω.  This process of forming an absorption mode, 
frequency discriminated spectrum is just that due to States, Haberkorn and 
Ruben (SHR).  A closely related process, knows as the Marion-Wüthrich or 
TPPI method, achieves the same result by incrementing the phase of the first 
pulse by 90° each time that t1 is incremented.  It can be shown that provided 
the increment of t1 is half that in the SHR method, an identical frequency 
discriminated double absorption spectrum results. 
 There are two possible ways, shown in Fig. 19 (b), of using gradients in 
the COSY sequence.  Either coherence level + 1 is selected during t1, 
leading to the echo or N-type spectrum, or level – 1 is selected leading to the 
anti-echo or P-type spectrum.  As has been pointed out, it is not possible to 
select simultaneously both of these pathways.  The time domain signals for 
the P- and N-type pathways are 

 ( ) ( ) ( ) ( )S t t i t t T i t t TP ( , ) exp exp exp exp1 2
1
2 1 1 2 2 2 2= − −Ω Ω  [32] 

 ( ) ( ) ( ) ( )S t t i t t T i t t TN ( , ) exp exp exp exp1 2
1
2 1 1 2 2 2 2= − − −Ω Ω  [33] 

In each case the resulting spectrum is expected to be frequency 
discriminated due to the complex exponential modulation in t1; the factor of 
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one half arises because the magnetization generated at the start of t1 is an 
equal mixture of coherence orders + 1 and – 1, only one of which is 
refocused by the final field gradient.  The use of gradient pulses has resulted 
in frequency discrimination without any further data processing or without 
the need to acquire further data sets with phase shifted pulses.  This is a 
consequence of selecting just one coherence level during t1.  Double Fourier 
transformation of SP and SN gives the spectra 
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Figure 20  Experimental spectra showing how P-type and an axis-reversed N-type spectrum, 
each of which has the phase-twist lineshape, can be added together to give an absorption 

mode spectrum. 

 In each case the real part of the spectrum has the phase-twist lineshape, 

( ) ( ) ( ) ( ){ }A A D D± + ± +−ω ω ω ω1 2 1 2 , which is an inextricable mixture of 

absorption and dispersion.  This lineshape is very undesirable in high 
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resolution NMR both because it is broad and because it has positive and 
negative parts.  Unless further steps are taken, applying a gradient during t1 
will always result in a phase-twist lineshape. 
 When gradients have been applied during t1 an absorption mode spectrum 
can be recovered by repeating the experiment twice, once to give the P-type 
and once to give the N-type spectrum.  Figure 20 shows typical P- and N-
type spectra recorded using gradient pulse selection.  If the F1 axis of the N-
type spectrum is reversed the result is identical to the P-type spectrum 
except that the dispersive part of the phase twist is in the opposite sense.  
Adding the axis-reversed N-type and P-type spectra together cancels the 
dispersive parts of the phase twist, leaving a peak with a double absorption 
lineshape. 

 This process is conveniently carried out in the following way.  The data 
from the P- and N-type spectra are transformed with respect to t2 to give 

 { }S t i t t T A iDP ( , ) exp( ) exp( / ) ( ) ( )1 2 1 1 2 2 2

1

2
ω ω ω= − ++ +Ω  [36] 

 { }S t i t t T A iDN ( , ) exp( ) exp( / ) ( ) ( )1 2 1 1 2 2 2

1

2
ω ω ω= − − ++ +Ω  [37] 

These are combined to give the new signal S+(t1,ω2) according to 

 
S t S t S t

i t t T A
P N

+ ∗

+

= +
= −

( , ) ( , ) ( , )

exp( ) exp( / ) ( )
1 2 1 2 1

1 1 2 2

ω ω ω
ωΩ

    [38] 

 Taking the complex conjugate of the time domain signal is equivalent to 
reversing the corresponding frequency axis in the frequency domain.  
Finally, Fourier transformation with respect to t1 yields, in the real part, the 
required double absorption lineshape 

 { }S A iD A+
+ + += +( , ) ( ) ( ) ( )ω ω ω ω ω1 2 1 1 2    . [39] 

 If the software available is not capable of the manipulations  described 
above, the cosine and sine modulated data sets needed for conventional SHR 
type processing can be generated by manipulating the P- and N-type time 
domain data in the following way.  The P- and N-type data sets are stored 
separately; adding them together produces a cosine modulated data set, 
whereas subtracting them from one another produces a sine modulated data 
set.  These statements can be demonstrated by considering the sum and 
difference of the functions SP(t1,t2) and SN(t1,t2) (Eqns. [32] and [33] 
respectively) together with the well known identities 2 
cosθ = exp(iθ) + exp(–iθ) and 2i sinθ = exp(iθ) – exp(–iθ). 
 In the presence of significant inhomogeneous broadening P- and N-type 
spectra have different lineshapes.  The most convenient way to understand 
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this is to imagine that the sample is divided into small compartments, in 
each of which the B0 field is sufficiently homogeneous that the natural 
linewidth dominates.  Each compartment contributes a phase-twist line to 
the spectrum, at a frequency determined by the precise value of the B0 field 
in that compartment.  These phase-twist lines from different compartments 
will overlap with one another and may cancel or reinforce, depending on 
how they are distributed.  In the N-type spectrum the phase-twists lines are 
so arranged that they reinforce one another, giving, in the limit of a wide 
distribution of frequencies, a largely positive ridge-like lineshape.  In 
contrast, in the P-type spectrum the phase-twists are aligned in such a way 
that they cancel one another.  In the limit of a wide distribution, the 
cancellation is all but complete. 
 This strong asymmetry has led some to conclude that frequency 
discrimination methods based on combining P- and N-type spectra would be 
rendered ineffective by the presence of inhomogeneous broadening.  
However, this view is mistaken as the following argument reveals.  Each 
compartment gives a P- and an N-type spectra with identical peak heights.  
Thus, when the spectra are combined, these individual phase-twists add 
together in precisely the way required, cancelling the dispersion 
contributions.  The observed spectrum is the sum of these individual spectra, 
thus the dispersive contributions are removed from it as well. 
 

4.3.4 Sensitivity 

 The use of gradients for coherence selection has consequences for the 
signal-to-noise ratio of the resulting spectrum when it is compared to a 
similar spectrum recorded using phase cycling.  Most of the differences 
between the sensitivity of the gradient and phase cycled experiments come 
about because a gradient is only capable of selecting one coherence order at 
a particular point in the sequence.  In contrast, it is often possible to select 
more than one coherence order when phase cycling is used (see section 
4.3.2.2). 
 If a gradient is used to suppress all coherences other than p = 0, i.e. it is 
used simply to remove all coherences, leaving just z-magnetization or zz 
terms, there is no inherent loss of sensitivity when compared to a 
corresponding phase cycled experiment.  If, however, the gradient is used to 
select a particular order of coherence the signal which is subsequently 
refocused will almost always be half the intensity of that which can be 
observed in a phase cycled experiment.  This factor comes about simply 
because it is likely that the phase cycled experiment will be able to retain 
two symmetrical pathways, whereas the gradient selection method will only 
be able to refocuse one of these. 
 The foregoing discussion applies to the case of a selection gradient 
placed in a fixed delay of a pulse sequence.  The matter is quite different if 
the gradient is placed within the incrementable time of a multi-dimensional 
experiment, e.g. in t1 of a two-dimensional experiment.  To understand the 
effect that such a gradient has on the sensitivity of the experiment it is 
necessary to be rather careful in making the comparison between the 
gradient selected and phase cycled experiments.  In the case of the latter 
experiments we need to include the SHR or TPPI method in order to achieve 
frequency discrimination with absorption mode lineshapes.  If a gradient is 
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used in t1 we will need to record separate P- and N-type spectra so that they 
can be recombined to  give an absorption mode spectrum.  We must also 
ensure that the two spectra we are comparing have the same limiting 
resolution in the t1 dimension, that is they achieve the same maximum value 
of t1 and, of course, the total experiment time must be the same.  The 
detailed argument which is needed to analyse this problem is beyond the 
scope of this lecture; it is given in detail in J. Magn. Reson Ser. A, 111, 70-
76 (1994) (NB There is an error in this paper: in Fig. 1 (b) the penultimate S 
spin 90° pulse should be phase y and the final S spin 90° pulse is not 
required).  The conclusion is that the signal-to-noise ratio of an absorption 
mode spectrum generated by recombining P- and N-type gradient selected 

spectra is lower, by 1 2  , than the corresponding phase cycled spectrum 
with SHR or TPPI data processing. 
 The potential reduction in sensitivity which results from selection with 
gradients may be more than compensated for by an improvement in the 
quality of the spectra obtained in this way.  Often, the factor which limits 
whether or not a cross peak can be seen is not the thermal noise level by the 
presence of other kinds of "noise" associated with imperfect calcellation etc.  
 

4.3.5 Diffusion 

 The process of refocusing a coherence which has been dephased by a 
gradient pulse is inhibited if the spins move either during or between the 
defocusing and refocusing gradients.  Such movement alters the magnetic 
field experienced by the spins so that the phase acquired during the 
refocusing gradient is not exactly opposite to that acquired during the 
defocusing gradient. 
 In liquids there is a translational diffusion of both solute and solvent 
which causes such movement at a rate which is fast enough to cause 
significant effects on NMR experiments using gradient pulses.  As diffusion 
is a random process we expect to see a smooth attenuation of the intensity of 
the refocused signal as the diffusion contribution increases.  These effects 
have been known and exploited to measure diffusion constants since the 
very earliest days of NMR. 

(a)

g

δ δ    ∆

(b)
      t1       t2

(c)
      t1       t2

τ τ
 

Figure 21.  (a) A spin echo sequence used to measure diffusion rates (see text); (b) and (c) 
are alternative ways of implementing gradients into a COSY spectrum. 

 An analysis of the simple spin echo sequence, shown in Fig. 21 (a), 
illustrates very well the way in which diffusion affects refocusing.  Note that 
the two gradient pulses can be placed anywhere in the intervals τ either side 
of the 180° pulse.  For a single uncoupled resonance, the intensity of the 
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observed signal, S, expressed as a fraction of the signal intensity in the 
absence of a gradient, S0 is given by 
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2 2 2
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= − −
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
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exp γ τ
τ

∆  [40] 

where D is the diffusion constant, ∆ is the time between the start of the two 
gradient pulses and τ is the duration of the gradient pulses; relaxation has 
been ignored.  For a given pair of gradient pulses it is diffusion during the 
interval between the two pulses, ∆, which determines the attenuation of the 
echo.  The gradients are used to label the magnetization with a spatially 
dependent phase, and then to refocus it.  The stronger the gradient the more 
rapidly the phase varies across the sample and thus the more rapidly the 
echo will be attenuated.  This is the physical interpretation of the term 
γ2G2τ2 in Eqn. [40]. 
 Diffusion constants generally decrease as the molecular mass increases. 
A small molecule, such as water, will diffuse up to twenty times faster than 
a protein with molecular weight 20,000.  Table 1 shows the loss in intensity 
due to diffusion for typical gradient pulse pair of 2 ms duration and of 
strength 10 G⋅cm–1 for a small, medium and large sized molecule; data is 
given for ∆ = 2 ms and ∆ = 100 ms.  It is seen that even for the most rapidly 
diffusing molecules the loss of intensity is rather small for ∆ = 2 ms, but 
becomes significant for longer delays.  For large molecules, the effect is 
small in all cases. 

 
Table I : Fraction of Transverse Magnetization Refocused  

After a Spin Echo with Gradient Refocusinga 

 

∆/msb small moleculec medium sized 
moleculed 

macro moleculee 

2 0.99 1.00 1.00 
100 0.55 0.88 0.97 

 

a Calculated for the pulse sequence of Fig. 21 (a) for two gradients of 

strength  

10 G⋅cm–1 and duration, τ, 2 ms; relaxation is ignored. 

b As defined in Fig. 21 (a). 

c  Diffusion constant, D, taken as that for water, which is 2.1 × 10–9 m2 s–1 at 

ambient temperatures. 

d Diffusion constant taken as 0.46 × 10–9 m2 s–1. 

e Diffusion constant taken as 0.12 × 10–9 m2 s–1. 
 



4–44 

4.3.5.1 Minimisation of Diffusion Losses 

 The foregoing discussion makes it clear that in order to minimise 
intensity losses due to diffusion the product of the strength and durations of 
the gradient pulses, G2τ2, should be kept as small as is consistent with 
achieving the required level of suppression.  In addition, a gradient pulse 
pair should be separated by the shortest time within the limits imposed by 
the pulse sequence.  This condition applies to gradient pairs the first of 
which is responsible for dephasing, and the second for rephasing.  Once the 
coherence is rephased the time that elapses before further gradient pairs is 
irrelevant from the point of view of diffusion losses. 
 In two-dimensional NMR diffusion can lead to line broadening in the F1 
dimension if t1 intervenes between a gradient pair.  Consider the two 
alternative pulse sequences for recording a simple N-type COSY spectrum 
shown in Fig. 21 (b) and (c).  In (b) the gradient pair are separated by the 
very short time of the final pulse, thus keeping the diffusion induced losses 
to an absolute minimum.  In (c) the two gradients are separated by the 
incrementable time t1; as this increases the losses due to diffusion will also 
increase resulting in an extra decay of the signal in t1.  The extra line 
broadening due to this decay can be estimated from Eqn. [40], with ∆ = t1, 
as γ2G2τ2D/π Hz.  For a pair of 2 ms gradients of strength 10 G⋅cm–1 this 
amounts �����������	
���

������
��������
���
� 
 This effect by which diffusion causes an extra line broadening in the F1 
dimension is usually described as diffusion weighting.  Generally it is 
possible to avoid this effect by careful placing of the gradients.  For 
example, the sequences in Fig. 21 (b) and (c) are in every other respect 
equivalent, thus there is no reason not to chose (b).  It should be emphasised 
that diffusion weighting occurs only when t1 intervenes between the 
dephasing and refocusing gradients. 
 

4.3.6 Some Examples of Experiments Using Gradients 

4.3.6.1 General Remarks 

 Reference has already been made to the two general advantages of using 
gradient pulses for coherence selection, namely the possibility of a general 
improvement in the quality of spectra and the removal of the requirement of 
completing a phase cycle for each increment of a multi-dimensional 
experiment.  In the case of recording spectra of proteins and similar 
molecules a number of particular advantages can be expected.  The first of 
these relates to heteronuclear correlation experiments which form the heart 
of many two- and higher-dimensional experiments.  In such experiments 
there is a need to suppress both the water resonance and the signals due to 
protons not coupled to a heteronucleus (nitrogen-15 or carbon-13, typically); 
selection with gradients will give improve greatly the suppression of both 
these types of signals.  Finally, we note that the dynamic range of the free 
induction decay recorded after gradient selection will be much lower than in 
an equivalent phase cycled experiment, allowing best use to be made of the 
resolution of the digitiser. 
 As has been discussed above, special care needs to be taken in 
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experiments which use gradient selection if absorption mode spectra are to 
be obtained.  For demanding applications where spectral resolution and 
sensitivity is at a premium, it is vital to record absorption mode spectra.  
This is especially the case in the indirectly detected domains of two- and 
higher-dimensional spectra. 
 In the following sections the use of gradient selection in several different 
experiments will be described.  The gradient pulses used in these sequences 
will be denoted G1, G2 etc. where Gi implies a gradient of duration τi, 
strength Bg,i and shape factor si.  There is always the choice of altering the 
duration, strength or, conceivably, shape factor in order to establish 
refocusing.  Thus, for brevity we shall from now on write the spatially 
dependent phase produced by gradient Gi acting on coherence of order p as 
pGi in the homonuclear or γ j j i

j

p G∑  in the heteronuclear case. 

 

4.3.6.2 Double Quantum Filtered COSY 

1
2

0
–1
–2

RF

g

      t1       t2

p

G2G1

 

Figure 22.  Pulse sequence for recording absorption mode DQF COSY spectra. 

 The sequence of Fig. 22 is suitable for recording absorption mode DQF 
COSY spectrum.  Here, no gradient is applied during t1, thus retaining 
symmetrical pathways and the phase errors which accumulate during the 
double quantum period are refocused by an extra 180° pulse; the refocusing 
condition is G2 = 2 G1.  Frequency discrimination in the F1 dimension is 
achieved by the SHR or TPPI procedures.  Multiple quantum filters through 
higher orders can be implemented in the same manner. 
 In this experiment data acquisition is started immediately after the final 
radiofrequency pulse so as to avoid phase errors which would accumulate 
during the second gradient pulse.  Of course, the signal only rephases 
towards the end of the final gradient, so there is little signal to be observed.  
However, the crucial point is that, as the magnetization is all in antiphase at 
the start of t2, the signal grows from zero at a rate determined by the size the 
couplings on the spectrum.  Provided that the gradient pulse is much shorter 
that 1/J, where J is a typical proton-proton coupling constant, the part of the 
signal missed during the gradient pulse is not significant and the spectrum is 
not perturbed.  Acquiring the data in this way avoids the need for an extra 
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180° pulse to refocus the phase errors that would accumulate during the 
second gradient.  If it is more convenient, an alternative procedure is to start 
to acquire the data after the final gradient, and then to right shift the free 
induction decay, bringing in zeroes from the left, by a time equal to the 
duration of the gradient. 
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4.3.6.3 Two-Dimensional HMQC  

g

I

S
      t1

      t2∆ ∆

    τ 1     τ 1G1 G1 G2

1
0

–1    pI

1
0

–1
    pS

 

Figure 23.  Pulse sequence for recording absorption mode HMQC spectra.  The CTP for the 
N-type spectrum is shown as a solid line and that for the P-type spectrum is shown dashed. 

 There are several ways of implementing gradient selection into the 
HMQC experiment, one of which, which leads to absorption mode spectra, 
is shown in Fig. 23.  The centrally placed I spin 180° pulse results in no net 
dephasing of the I spin part of the heteronuclear multiple quantum 
coherence by the two gradients G1 i.e. the dephasing of the I spin coherence 
caused by the first is undone by the second.  However, the S spin coherence 
experiences a net dephasing due to these two gradients and this coherence is 
subsequently refocused by G2.  Two 180° S spin pulses together with the 
delays τ1 refocus shift evolution during the two gradients G1.  The centrally 
placed 180° I spin pulse refocuses chemical shift evolution of the I spins 
during the delays ∆ and all of the gradient pulses (the last gradient is 
contained within the final delay, ∆).  The refocusing condition is 

 � 2 01 2γ γs IG G− =  [41] 

where the + and – signs refer to the P- and N-type spectra respectively.  The 
switch between recording these two types of spectra is made simply by 
reversing the sense of G2.  The P- and N-type spectra are recorded separately 
and then combined in the manner described in section 4.3.3 to give a 
frequency discriminated absorption mode spectrum. 
 In the case that I and S are proton and carbon-13 respectively, the 
gradients G1 and G2 are in the ratio 2 : ± 1.  Proton magnetization not 
involved in heteronuclear multiple quantum coherence, i.e. magnetization 
from protons not coupled to carbon-13, is refocused after the second 
gradient G1 but is then dephased by the final gradient G2.  Provided that the 
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gradient is strong enough these unwanted signals, and the t1-noise associated 
with them, will be suppressed.  
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4.3.6.4 Two-Dimensional HSQC 

(a)

(b)
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Figure 24.  Pulse sequences for recording absorption mode HSQC spectra: (a) is the usual 
sequence, see text for a description of the significance of point a; (b) gives P- or N-type 

spectra which can be recombined to give an absorption mode spectrum. 

 The basic pulse sequence for the HSQC experiment is shown in Fig. 24 
(a).  For a coupled two spin system the transfer can be described as 
proceeding via the spin ordered state 2IzSz which exists at point a in the 
sequence.  In the absence of significant relaxation magnetization from 
uncoupled I spins is present at this point as Iy.  Thus, a field gradient applied 
at point a will dephase the unwanted magnetization and leave the wanted 
term unaffected.  The main practical difficulty with this approach is that the 
uncoupled magnetization is only along y at point a provided all of the pulses 
are perfect; if the pulses are imperfect there will be some z magnetization 
present which will not be eliminated by the gradient.  In the case of 
observing proton - carbon-13 or proton - nitrogen-15 HSQC spectra from 
natural abundance samples, the magnetization from uncoupled protons is 
very much larger than the wanted magnetization, so even very small 
imperfections in the pulses can give rise to unacceptably large residual 
signals.  However, for globally labelled samples the degree of suppression 
has been shown to be sufficient, especially if some minimal phase cycling or 
other procedures are used in addition.  Indeed, such an approach has been 
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used successfully as part of a number of three- and four-dimensional 
experiments applied to globally carbon-13 and nitrogen-15 labelled proteins 
(vide infra). 
 The key to obtaining the best suppression of the uncoupled magnetization 
is to apply a gradient when transverse magnetization is present on the S spin.  
An example of the HSQC experiment utilising such a principle is given in 
Fig. 24 (b).  Here, G1 dephases the S spin magnetization present at the end of 
t1, and after transfer to the I spins, refocusing is effected by G2.  An extra 
180° pulse to S in conjunction with the extra delay τ1 ensures that phase 
errors which accumulate during G1 are refocused; G2 is contained within an 
existing spin echo.  The refocusing condition is 

 � γ γS IG G1 2 0− =  [42] 

where the –  and + signs refer to the N- and P-type spectra respectively.  As 
before, an absorption mode spectrum is obtained by combining the N- and 
P-type spectra, which can be selected simply by reversing the sense of G2. 
 The basic HMQC and HSQC sequences can be extended to give two- and 
three-dimensional experiments such as HMQC-NOESY and HMQC-
TOCSY.  The HSQC experiment is often used as a basic element in other 
two-dimensional experiments.  For example, in proteins the proton - 
nitrogen-15 NOE is usually measured by recording a two-dimensional 
spectrum using a pulse sequence in which native nitrogen-15 magnetization 
is transferred to proton for observation.  The difference between two such 
spectra recorded with and without pre-saturation of the entire proton 
spectrum reveals the NOE.  Suppression of the water resonance in the 
control spectrum causes considerable difficulties, which are conveniently 
overcome by use of gradient pulses for selection. 
 

4.3.6.5 Sensitivity Enhanced HSQC 

      

G1 G2τ1

∆ ∆ ∆ ∆ ∆ ∆
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Figure 25.  Pulse sequence for recoording sensitivity-enhanced HSQC spectra.  In its 
original form the sequence is used without the gradients, the delays τ1 and τ2  and the 180° 
pulses shown dashed.  In the Kay modification these optional elements are included; see 

text for discussion.  The phase φ is ±x. 

 The pulse sequence of Fig 25. is a modification of the basic HSQC 
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sequence which, when compared to that sequence, gives a signal-to-noise 

ratio which is higher by a factor of 2 .  The sequence achieves this by 
transferring to the I spins both the x and the y components of the S spin 
magnetization present at the end of t1.  The conventional HSQC experiment 
only transfers one of these components and so results in a weaker signal 
overall. 
 The way in which this sequence works can be determined by a quick 
analysis using product operators; we shall assume that the delay ∆ is set to 
1/(4J).   At the end of t1 the x component of the magnetization, 2IzSx, is 
transferred by the first pair of 90° pulses to heteronuclear multiple quantum, 
2IySx.  The subsequent spin echo refocuses this term and then the next pair 
of 90° pulses transfers the coherence to anti-phase on the I spins: 2IySz.  This 
anti-phase term evolves into in-phase along x, Ix, during the final spin echo.  
The final pulse has no effect on this state.  Thus the x component is 
transferred from S to I. 
 At the end of t1 the y component of the magnetization, 2IzSy, is 
transferred by the first pair of 90° pulses to the anti-phase state, 2IySz.  This 
re-phases during the subsequent spin echo to the in-phase state Ix.  The next 
90° pulse to I rotates this to Iz where it remains for the rest of the sequence 
until the final I spin 90° pulse which turns it to the observable, Iy.  Note that 
the x-component is transferred to Ix and the y-component to Iy i.e. there is a 
90° phase shift in the observed signal. 
 If one component (for example the x-component) present at the end of t1 
is transferred the resulting modulation in t1 is one of amplitude, for example 
varying as cos(ΩSt1).  The perpendicular component (y) will also be 
amplitude modulated, but as it is 90° out of phase with the x-component the 
modulation is of the form sin(ΩSt1).  In the sensitivity-enhanced experiment 
both of these components are transferred, and what is more the transferred 
signals appear along perpendicular axes.  The overall result of this is that the 
observed signal is phase modulated with respect to t1.  Formally the 
observed signal varies as cos(ΩSt1) + i sin(ΩSt1) = exp(iΩSt1), where the 
complex i in the combination accounts for the phase shift between the two 
observed signals. 
 The first S spin 90° pulse after t1 does not affect the x component of the 
magnetization, but does affect the y-component.  If the phase of this pulse is 
altered from x to –x, therefore, the sign of the transferred y-component will 
be altered whereas the transferred x-component is unaffected.  Thus, by 
changing the phase of this pulse the observed modulation can be altered to 
cos(ΩSt1) – i sin(ΩSt1) = exp(–iΩSt1). 
 In effect the experiment allows us to record phase modulated data and to 
choose if the phase modulation is of the form that will lead to a  P-type 
spectrum or an N-type spectrum.  These two spectra can be combined 
together in precisely the manner described in section 4.3.3 to give an 
absorption mode spectrum; this is essentially the data processing proposed 
for this sensitivity-enhanced experiment. 
 If we consider the coherence transfer pathway brought about by this 
sensitivity-enhanced sequence we conclude that, as the data is phase 
modulated, a single coherence order must have been selected in during t1.  If 
the phase of the S spin pulse is chose such that P-type data is obtained then 
we conclude that the coherence order selected in t1 is –1 whereas if N-type 
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data is obtained the coherence order selected is +1.  We could add gradient 
pulses to select either of these two pathways; suitable modifications are 
shown in the sequence shown in Fig. 25.  The relative sense of the two 
gradients will determine which of the P- or N-type modulation is selected. 
 The key point is, then, that as the original experiment selects inherently 
just one out of the two pathways the addition of gradient selection, which 
can only select one pathway at a time, will not result in any loss of signal.  
Thus, the sensitivity-enhanced experiment with gradient selection gives, in 
theory, identical signal-to-noise ratio as obtained without gradients.  This is 
a rather unusual as, as we have seen, coherence selection with gradients 
usually leads to a loss in signal. 
 The detailed argument concerning the sensitivity of these experiments 
can be found elsewhere (see section 4.3.4 and reference quoted there).  In 
summary we conclude that the sensitivity-enhanced experiment, with or 
without gradients, has a signal-to-noise ratio which is greater by a factor of 

2  than that of the equivalent phase cycled experiment.  Compared to a 
gradient experiment in which separate P- and N-type spectra are recorded 
the signal-to-noise ratio is enhanced by a factor of 2. 
 The sequence of pulses used to transfer both the components of 
magnetization can be added to many heteronuclear experiments, thus giving 
the benefits of both improved sensitivity and, if required, gradient selection.  
The resulting sequences are, however, considerably longer than the originals 
so there is the possibility that the potential sensitivity gain will be reduced as 
a consequence of losing signal due to relaxation. 
 

4.3.6.6 Three-Dimensional HN(CO)CA 
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Figure 26.  An HN(CO)CA experiment with gradients. 

 Figure 26 shows a pulse sequence used by Bax and Pochapsky to record 
constant time three-dimensional HN(CO)CA spectra of globally labelled 
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proteins.63  In this sequence, gradients are used in several different roles.  
The gradient G1 is used to dephase magnetization from protons not coupled 
to nitrogen-15, as was described above in connection with the HSQC 
experiment (section 4.3.6.4 and Fig. 24 (a)).  As was described above, this 
kind of gradient selection fails in the presence of pulse imperfections.  
However, in this case the use of a period of spin locking prior to the second 
proton 90° pulse, combined with the fact that the sample is globally labelled 
in both nitrogen-15 and carbon-13, results in a degree of suppression that is 
more than adequate.  The two gradients G2 combine to select only that 
magnetization which has been refocused by the second 180° nitrogen pulse.  
Likewise the two gradients G3 select magnetization which is correctly 
refocused by the 180° pulse to the carbonyl carbons placed in the centre of 
t2.  In addition, these gradients dephase any nitrogen magnetization present.  
The two gradients G4 serve to eliminate any magnetization which is created 
by the second to last proton 180° pulse, and the final pair of gradients G5, 
like G2 and G3, select the proton magnetization which is correctly refocused 
by the final proton 180° pulse.  These uses of gradient pulses in conjunction 
with different types of spin echoes have been described in the section above.  
The polarity of the various gradient pulses is chosen so as to maximise the 
dephasing of uncoupled proton magnetization, and hence give the best 
suppression. 
 The most important feature of this pulse sequence is that the gradients are 
applied either when the required magnetization is along z or as part of 
refocusing schemes using 180° pulses.  Thus, in contrast with all of the 
experiments described in this section, there is no loss of signal associated 
with the use of gradients.  In addition, as no gradients are associated with the 
evolution times, absorption mode spectra are obtained without further 
manipulation of the data. 
 

4.3.6.7 Four-Dimensional HCANNH 

 Boucher et al. have described a four-dimensional HCANNH experiment, 
used for recording spectra of globally nitrogen-15, carbon-13 labelled 
proteins, which combines gradient selection with limited phase cycling.  The 
sequence is shown in Fig. 27.  A single pair of gradients is used to select the 
final nitrogen to proton transfer step and a two step phase cycle of the first 
90° pulse to Cα is used to select the transfer from Cα to N.  A period of spin 
locking of the proton signal just prior to the first transfer to Cα is used to 
improve the water suppression.  The 13Cα and 15N shifts are monitored 
during constant time periods, and the gradient G1 is included in the second 
of these.  As has been described above, placing a gradient in a constant time 
period does not give rise to any extra phase errors due to the evolution of 
offsets during the gradient.  The refocusing gradient G2 is placed within an 
existing spin echo.  The refocusing condition is 

 ± − =γ γN HG G1 2 0 , [43] 
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Figure 27.  The HCANNH experiment with one step of gradient selection. 

where γN and γH are the gyromagnetic ratios of nitrogen-15 and proton 
respectively; the change between P- and N-type data is made simply by 
reversing the sense of one of the gradients.  Absorption mode spectra in the 
F1 and F2 domains are obtained using the SHR-TPPI method.  Separate P- 
and N-type data sets are recorded and then combined in the manner 
described above so as to give absorption mode lineshapes in F3.  The 

experiment thus shows a signal-to-noise ratio which is 2  poorer than an 
equivalent phase cycled experiment. 
 

4.3.7 Zero-Quantum Dephasing and Purge Pulses 

 Both z-magnetization and homonuclear zero-quantum coherence have 
coherence order 0, and thus neither are dephased by the application of a 
gradient pulse.  Selection of coherence order zero is achieved simply by 
applying a gradient pulse which is long enough to dephase all other 
coherences; no refocusing is used.  In the vast majority of experiments it is 
the z-magnetization which is required and the zero-quantum coherence that 
is selected at the same time is something of a nuisance. 
 A number of methods have been developed to suppress contributions to 
the spectrum from zero-quantum coherence.  Most of these utilise the 
property that zero-quantum coherence evolves in time, whereas z-
magnetization does not.  Thus if several experiments in which the zero-
quantum has been allowed to evolve for different times are co-added, 
cancellation of zero-quantum contributions to the spectrum will occur.  Like 
phase cycling, such a method is time consuming and relies on a difference 
procedure; it is thus subject to the same criticisms as can be levelled at 
phase cycling.  However, it has been shown that if a field gradient is 
combined with a period of spin-locking the coherences which give rise to 
these zero-quantum coherences can be dephased.  Such a process is 
conveniently considered as a modified purging pulse. 
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4.3.7.1 Purging Pulses 

 A purging pulse consists of a relatively long period of spin-locking, taken 
here to be applied along the x-axis.  Magnetization not aligned along x will 
precess about the spin-locking field and, because this field is inevitably 
inhomogeneous, such magnetization will dephase.  The effect is thus to 
purge all magnetization except that aligned along x.  However, in a coupled 
spin system certain anti-phase states aligned perpendicular to the spin-lock 
axis are also preserved.  For a two spin system (with spins k and l), the 
operators preserved under spin-locking are Ikx, Ilx and the anti-phase state 
2 2I I I Iky lz kz ly− .  Thus, in a coupled spin system, the purging effect of the 

spin-locking pulse is less than perfect. 
 The reason why these anti-phase terms are preserved can best be seen by 
transforming to a tilted co-ordinate system whose z-axis is aligned with the 
effective field seen by each spin.  For the case of a strong B1 field placed 
close to resonance the effective field seen by each spin is along x, and so the 
operators are transformed to the tilted frame simply by rotating them by –
90° about y 

   Ikx
–π

2Iky →     Ikz
T I lx

–π
2Ily →     Ilz

T  [44] 

 2 2 2 2
2

I I I I I I I Iky lz kz ly

I I

ky lx kx ly
ky ly−  →  −

− +π / ( ) T T T T    . [45] 

Operators in the tilted frame are denoted with a superscript T.  In this frame 
the x-magnetization has become z, and as this is parallel with the effective 
field, it clearly does not dephase.  The anti-phase magnetization along y has 
become 2 2I I I Iky lx kx ly

T T T T− , which is recognised as zero-quantum coherence in 

the tilted frame.  Like zero-quantum coherence in the normal frame, this 
coherence does not dephase in a strong spin-locking field.  There is thus a 
connection between the inability of a field gradient to dephase zero-quantum 
coherence and the preservation of certain anti-phase terms during a purging 
pulse. 
 Zero-quantum coherence in the tilted frame evolves with time at a 
frequency, ΩZQ

T , given by 

 Ω Ω ΩZQ
T = + − +( ) ( )k l

2
1
2 2

1
2ω ω  [46] 

where Ωi is the offset from the transmitter of spin i and ω1 is the B1 field 
strength.  If a field gradient is applied during the spin-locking period the 
zero quantum frequency is modified to 

 Ω Ω ΩZQ
T

g g( ) ( ( ) ) ( ( ) )r B r B rk l= + + − + +γ ϖ γ ϖ1
2

1
2   . [47] 
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This frequency can, under certain circumstances, become spatially 
dependent and thus the zero-quantum coherence in the tilted frame will 
dephase.  This is in contrast to the case of zero-quantum coherence in the 
laboratory frame which is not dephased by a gradient pulse.  
 The principles of this dephasing procedure are discussed in detail 
elsewhere (J. Magn. Reson. Ser. A 105, 167-183 (1993) ).  Here, we note the 
following features.   (a) The optimum dephasing is obtained when the extra 
offset induced by the gradient at the edges of the sample, γBg(rmax), is of the 
order of ω1.  (b) The rate of dephasing is proportional to the zero-quantum 
frequency in the absence of a gradient, Ωk – Ωl.  (c) The gradient must be 
switched on and off adiabatically.  (d) The zero-quantum coherences may 
also be dephased using the inherent inhomogeneity of the radio-frequency 
field produced by typical NMR probes, but in such a case the optimum 
dephasing rate is obtained by spin locking off-resonance so that tan–1 
ω1/Ωk,l �� ����� � �
�� � �
�	�
���� ��� ��� ��	����
�
��
� B1 field can be 
accelerated by the use of special composite pulse sequences. 

RF
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      t1
      t2

DIPSI

g

RF
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      t1       t2
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    τ m
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y

G1

G2

G1

G1  

Figure 28 Pulse sequences employing zero-quantum dephasing by a combination of spin-
locking and a B0 gradient pulse: (a) for TOCSY and (b) for NOESY. 

 The combination of spin-locking with a gradient pulse allows the 
implementation of essentially perfect purging pulses.  Such a pulse could be 
used in a two-dimensional TOCSY experiment whose pulse sequence is 
shown in Fig. 28 (a).   The period of isotropic mixing transfers in-phase 
magnetization (say along x) between coupled spins, giving rise to cross-
peaks which are absorptive and in-phase in both dimensions.  However, the 
mixing sequence also both transfers and generates anti-phase magnetization 
along y, which gives rise to undesirable dispersive anti-phase contributions 
in the spectrum.  In the sequence of Fig. 24 (a) these anti-phase 
contributions are eliminated by the use of a purging pulse as described here.  
Of course, at the same time all magnetization other than x is also eliminated, 
giving a near perfect TOCSY spectrum without the need for phase cycling or 
other difference measures. 
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 These purging pulses can be used to generate pure z-magnetization 
without contamination from zero-quantum coherence by following them 
with a 90°(y) pulse, as is shown in the NOESY sequence in Fig. 28 (b).  
Zero-quantum coherences present during the mixing time of a NOESY 
experiment give rise to troublesome dispersive contributions in the spectra, 
which can be eliminated by the use of this sequence. 
 

4.3.8 Conclusions 

 Pulsed-field gradients appear to offer a solution to many of the 
difficulties associated with phase cycling, in particular they promise higher 
quality spectra and the freedom to chose the experiment time solely on the 
basis of the required resolution and sensitivity are attractive features.  
However, these improvements are not unconditional.  When gradient 
selection is used, attention has to be paid to their effect on sensitivity and 
lineshapes, and dealing with these issues usually results in a more complex 
pulse sequence.  Indeed it seems that the potential loss in sensitivity when 
using gradient selection is the most serious drawback of such experiments.  
Nevertheless, in a significant number of cases the potential gains, seen in the 
broadest sense, seem to outweigh the losses. 
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